Universidade Federal de Alagoas Instituto de Física Exame de Qualificação - Mecânica Quântica (14/09/18)

1) Considere uma partícula sujeita a um potencial, dado por

$$V(x) = 0, 0 \le x \le a$$
$$= \infty, x < 0 e x > a$$

- (a) Obtenha os autovalores de energia e (b) as autofunções de energia normalizadas.
- 2) Considere a hamiltoniana de um sistema de dois níveis, dada por

$$H = E_0 I + W A + W A^{\dagger},$$

onde E_0 e W são constante, $I = \sum_{n=1}^{2} |n\rangle\langle n|$ e $A = \sum_{n=1}^{2} |n\rangle\langle n+1|$.

Assumindo condições de contorno periódicas, $|3\rangle = |1\rangle$, (a) encontre as representações matriciais de I, A, A^{\dagger} e H. (b) A é um operador hermitiano? (c) A e H possuem os mesmos autoestados?

- (d) Calcule os autovalores (E_1, E_2) e os autoestados $(|E_1\rangle, |E_2\rangle)$ de H.
- 3) Suponha que o spin de uma partícula esteja no estado

$$|\psi\rangle = -\sin\frac{\theta}{2}|+\rangle + \cos\frac{\theta}{2}e^{i\varphi}|-\rangle.$$

- (a) Calcule as probabilidades de obtermos os autovalores $+\hbar/2$ e $-\hbar/2$, quando realizamos a medida de S_y , assim como o seu valor esperado $\langle \psi | S_y | \psi \rangle$.
- (b) Obtenha a evolução temporal, $|\psi(t)\rangle = U(t,0)|\psi\rangle$, a partir da hamiltoniana $H = \omega_0 S_z$, onde $\omega_0 = \frac{|e|B_z}{m_e c}$, assim como a evolução temporal do valor esperado é $\langle \psi(t)|S_y|\psi(t)\rangle$.
- (c) Encontre o operador unitário S, tal que $S|\pm\rangle = |S_y\pm\rangle$, e rescreva o estado $|\psi\rangle$ em função dessa base nova $\{|S_y\pm\rangle\}$.

Agora, (d) encontre as probabilidades $|\langle \pm S_y | \psi \rangle|^2$ e o valor esperado $\langle \psi | S_y | \psi \rangle$, com $|\psi\rangle$ e S_y escritos em função de $\{|S_y \pm \rangle\}$.

Dados:

$$\begin{split} |S_x \pm \rangle &= \tfrac{1}{\sqrt{2}} |+\rangle \pm \tfrac{1}{\sqrt{2}} |-\rangle, \ |S_y \pm \rangle = \tfrac{1}{\sqrt{2}} |+\rangle \pm \tfrac{i}{\sqrt{2}} |-\rangle, \\ S_x &= \tfrac{\hbar}{2} |+\rangle \langle -| + \tfrac{\hbar}{2} |-\rangle \langle +| \ \mathrm{e} \ S_y = -\tfrac{i\hbar}{2} |+\rangle \langle -| + \tfrac{i\hbar}{2} |-\rangle \langle +|, \\ \sin(A \pm B) &= \sin A \cos B \pm \sin B \cos A, \\ \cos(A \pm B) &= \cos A \cos B \mp \sin B \sin A \end{split}$$

4) Um oscilador harmônico simples adimensional, $H=\left(N+\frac{1}{2}\right),\ N=a^{\dagger}a,$ $a=\sqrt{\frac{1}{2}}\left(x+ip\right)$, é sujeito à uma perturbação

$$\lambda V = bx$$
,

onde b é uma constante real. (a) Calcule o autoestado perturbado $|n\rangle$, até segunda ordem em λ ,

$$|n\rangle = |n^{(0)}\rangle + \lambda \sum_{k \neq n} |k^{(0)}\rangle \frac{V_{kn}}{E_n^{(0)} - E_k^{(0)}} - \lambda^2 \sum_{k \neq n} |k^{(0)}\rangle \frac{V_{nn}V_{kn}}{(E_n^{(0)} - E_k^{(0)})^2} + \lambda^2 \sum_{k \neq n} \sum_{l \neq n} |k^{(0)}\rangle \frac{V_{kl}V_{ln}}{(E_n^{(0)} - E_k^{(0)})(E_n^{(0)} - E_l^{(0)})} + \cdots,$$

onde $V_{nk}=\langle n^{(0)}|V|k^{(0)}\rangle$. (b) Considerando que a normalização de $|n\rangle$ seja dada por $|n\rangle_N=Z_n^{1/2}|n\rangle$, onde

$$Z_n = 1 - \lambda^2 \sum_{k \neq n} \frac{|V_{kn}|^2}{(E_n^{(0)} - E_k^{(0)})^2} + \cdots,$$

calcule Z_n e mostre que $N\langle n|n\rangle_N=1$, também até segunda ordem em λ .