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Abstract

Within a �rst-order time-dependent perturbation approach, we compute the

spontaneous decay rate of a two-level system placed in the vicinity of a perfectly

re�ecting spherical surface (exterior and interior) as well as the spontaneous emis-

sion rate of a two-level system trapped between two perfectly re�ecting concentric

spheres. We consider a model system in which the emitter is represented by a two-

level monopole coupled to a Hermitian massless scalar �eld. Using the method of

images, we determine the appropriate Wightman's function evaluated in the world

line of the atom. For the atom trapped between the radii of the concentric spheres,

Wightman's function of the atom incorporates contributions from an in�nite set of

variable image charges, satisfying Dirichlet boundary conditions. We provide an-

alytical expressions for the decay rate to investigate the radiation process of the

atomic system near a single sphere and trapped between the concentric spheres. We

provide a detailed analysis on the dependence of the decay rate on a sphere radius,

atom's location, and emitted radiation frequency. What is more, on the case of

spherical shells, we analyze the decay rate on di�erent relationships between the

radii of spheres and the radiation energy emitted. As it turns, we reveal regimes of

strong suppression of the spontaneous emission rate, and development of irregular

oscillations as function of quantum emitted energy.



Resumo

Dentro de uma teoria de perturbação dependente do tempo de primeira ordem

calculamos a taxa de emissão espontânea de um sistema de dois níveis posicionado

na vizinhança de uma superfície esférica perfeitamente re�etora (exterior e interior),

bem como a taxa de emissão espontânea de um sistema de dois níveis aprisionado en-

tre duas esferas concêntricas perfeitamente re�etoras. Consideramos um modelo do

sistema no qual o emissor é representado por um monopolo de dois níveis acoplado

a um campo escalar Hermitiano sem massa. Usando o método das imagens determi-

namos a função apropriada de Wightman avaliada na linha de universo do átomo.

Para o átomo preso entre os raios das esferas concêntricas, a função de Wightman

do átomo incorpora contribuições de um conjunto in�nito de cargas imagens var-

iáveis, satisfazendo as condições de contorno de Dirichlet. Fornecemos expressões

analíticas para a taxa de decaimento, a�m de investigar o processo de radiação do

sistema atômico próximo de uma única esfera e preso entre as esferas concêntricas.

Apresentamos uma análise detalhada da dependência da taxa de decaimento com o

raio de esfera, localização do átomo e frequência da radiação emitida. Além disso,

no caso de cascas esféricas analisamos a taxa de decaimento para diferentes relações

entre os raios das esferas e a energia de radiação emitida. Por �m, revelamos regimes

de forte supressão da taxa de emissão espontânea e o desenvolvimento de oscilações

irregulares como função da energia quântica emitida.
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1
Introduction

Spontaneous and stimulated emission processes are responsible for almost all

the light that reaches our eyes: sun, light from a lamp, screen of a computer or

smartphone, etc. The physical idea of spontaneous emission was introduced by

Einstein in 1917 [1]: if a light source (atoms, molecules, nanocrystals, etc.) is

in an excited energy state with energy E2, it may decay spontaneously (without

any external stimulus) to the lower energy state E1, releasing the energy di�erence

between the two states, in the form of a photon. The photon will have frequency ν

and energy hν, given by the Planck equation E2 − E1 = hν, where h is the Planck

constant (or commonly written as E2 − E1 = ~ω, where ~ is the reduced Planck

constant). The phase of the photon in spontaneous emission and the direction in

which the photon propagates are random. The same does not apply to a stimulated

emission, that is, the process in which an incident photon of speci�c frequency can

interact with an excited atomic electron, or other excited molecular state, bringing

it to a lower energy level. In this case the released energy is transferred to the

electromagnetic �eld, creating a new photon with a phase, frequency, polarization

and direction of travel identical to the photons of the incident wave. A diagram of

energy levels, which illustrates the process can be seen in Fig. 1.1.

Spontaneous emission cannot be explained using the classical electromagnetic

theory and is considered as a fundamentally quantum process. A physical expla-
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Figure 1.1: The spontaneous emission is illustrated on the left: A - atom in the
excited state (energy E2); B - emission of a photon (hν); C - atom in the ground
state (energy E1 < E2). And the stimulated emission, on the right: A - before
emission, with the atom in the excited state (energy E2), and an incident photon;
B - during emission of a photon (hν); C - After emission, with atom in the ground
state (energy E1 < E2), and two emissions of a photon.

nation for spontaneous emission generally invokes the vacuum modes of the elec-

tromagnetic �eld [2]. After the development of the Jaynes-Cummings model [3],

describing a two-level atomic system interacting with a quantized �eld mode within

an optical cavity, it is possible to predict non-intuitively that the rate of sponta-

neous emission could be controlled depending on the boundary conditions of the

surrounding vacuum �eld. Those experiments later originated the Cavity Quantum

Electrodynamics (CQED), whereby it is possible to study the e�ects of mirrors and

cavities on radiative corrections.

Spontaneous emission is not just an intrinsic property of excited systems, but is

strongly dependent on the spectral content of zero-point �uctuations of the electro-

magnetic vacuum, and completely in�uenced by the presence of boundaries. Since

the seminal work of Purcell [4], it is known that the environment has a profound

in�uence on the decay rate of excited systems. In particular, when an excited system

is close to interfaces, the imposed boundary conditions modify the density of possi-

ble electromagnetic modes. As a result, the decay rate changes due to the system's
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coupling with the modi�ed vacuum modes. When free atoms are positioned inside a

cavity, the spontaneous emission rate is di�erent from the value in free space [5, 6].

The control of spontaneous emission processes is fundamental for the appropri-

ate performance of optoelectronic devices, such as lighting screens, lasers, optical

ampli�ers and solar cells. The possibility of adjusting or controlling the spontaneous

emission of radiation by excited systems has been interpreted as an important ad-

vancement for the development of a new class of quantum optical devices, such as

nanospectrometers, nanolasers as well as electroluminescent and photonic band-gap

structures [7�11].

The possibility of enhancement or suppression of the radiative emission rate of

emitters positioned near conducting walls, wedges, spheres and cylinders, or trapped

in microcavities such as parallel walls, spheres and ellipsoids has been extensively

explored in recent years [5,12�36]. Recently, the spontaneous decay rate of quantum

entangled atoms near interfaces has been a subject of increasing interest due to the

possibility of generating and controlling quantum entangled radiation �elds [37�40].

The �rst experimental work on inhibited spontaneous emission was performed

by Drexhage, Kuhn and Schaefer (see Ref. [41]). In that work, the �uorescence

of a thin dye �lm close to a mirror is investigated. They observed a reduction in

the �uorescence decay of up to 25% resulting from the stationary-wave standard

close to the mirror. Drexhage's experiment already provided a conclusive evidence

that spontaneous emission rate depends essentially on the local optical environment.

What is more, similar experiments were conducted by de Martini et al [42]. The

experiment consists of the �rst achievement in optics of the resonant coupling of

atoms with a single mode of the radiation �eld. Gabrielse and Dehmelt [43] also

observed the inhibited spontaneous emission in 1985. Experiments with a single

electron stored in a Penning trap demonstrate that cyclotron orbits had lifetimes

up to 10 times larger than when calculated in free space. The electrodes of the

trap form a cavity, which separates the cyclotron motion from the vacuum radiation

�eld leading to a longer lifetime. Experiments with Rydberg atoms on inhibition of
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spontaneous emission was also performed by Hulet et al [16] and by Jhe et al [44].

Hulet et al observed in their experiments that spontaneous radiation by an atom

in a Rydberg state has been inhibited by the use of parallel conducting planes. In

that work they observed that spontaneous emission is abruptly "turned o�" at the

cuto� frequency of the waveguidelike structure. The natural lifetime is measured

to be increased by a factor of at least 20. Jhe et al observed that the radiative

decay of Cs atoms excited into the 5D5/2 level and passing between two metallic

mirrors spaced by a 1.1µm gap depends on its angular momentum. Furthermore,

the spontaneous emission at a wavelength of 3.49µm is suppressed for the substates

with maximum angular momentum normal to the mirrors, which survives without

signi�cant decay during approximately 13 natural lifetimes.

It has been observed by Goy et al [15] that the spontaneous-emission lifetime

of Rydberg atoms is shortened by a large ratio when these atoms are crossing a

high-Q superconducting cavity tuned to resonance with a millimeter-wave transition

between adjacent Rydberg states. The experiment is performed with Rydberg atoms

of Na excited in the 23s state in a niobium superconducting cavity resonant at 340

GHz. The cooling of the cavity had the advantage of totally suppressing the black-

body �eld. The latter e�ect is completely absent if optical transitions are observed.

In 1991 suppression and enhancement of spontaneous emission in semiconductor

microcavities were demonstrated in experiments by Yamamoto et al (see a list of

the above experiments in Ref. [45]).

It is incontrovertible that the spontaneous decay rate is drastically modi�ed

when the excited system is positioned close to interfaces. An interesting experimen-

tal result is shown in Fig. 1.2 [46, 47], where the spontaneous emission rate of a

monolayer of Eu3+ ions positioned above a planar silver mirror is investigated as a

function of the Eu3+ ion-metal separation. We can observe two di�erent physical

processes governing the behavior of excited molecules above metallic interfaces: for

separations greater than about 10 spacer layers, the lifetime oscillates as a function

of ion-metal separation and afterwards, as the ion-metal separation increases, the
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Figure 1.2: Experimental measure of the excited state lifetime of the Eu3+ complex
in front of a silver mirror as a function of the ion-metal separation. The thickness
of a single spacer layer is 2.6nm. Figure taken from Ref. [46].

amplitude of the oscillations decreases. These features result from the interference

between the direct emission from the dipole and that re�ected from the mirror.

The result presented in Ref. [46] is similar to the one of Drexhage [41]. Yet,

it makes it possible to deduce, as latter investigated in this work about spherical

symmetries, how non-planar interfaces can modify the spontaneous decay rate of an

excited system. Recently, it has been shown that the spontaneous emission can be

either enhanced or suppressed using invisibility cloaks or gradient index lenses, with

modi�cation of the local density of optical states [48]. When the excited system

is close to the interfaces, the boundary conditions modify the density of possible

electromagnetic modes. Currently, the spontaneous decay rate of quantum entangled

atoms close to interfaces has been a subject of growing interest of the scienti�c

community [37�40].

Field-theoretical approaches have provided important insights on the in�uence of
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boundary walls on the radiative process of detectors stimulated by the �uctuations

of the quantum vacuum. Using a simple theoretical model in which the atom is

represented by a two-level monopole coupled to a massless scalar �eld and the time-

dependent perturbation theory within a �rst-order approach it is possible to obtain

an analytical expression for the asymptotic decay rate as well as the method of

images to calculate the appropriate Wightman's function evaluated in the world line

of the atom. This function is associated with the boundary conditions. Although

this approximation does not include polarization e�ects, such a model captures the

essential ingredients needed to understand the in�uence of the �eld's mode changes

induced by the presence of bounding surfaces on the atom's spontaneous emission,

as demonstrated by Ford et al [19] that, in order to focus on the speci�c contribution

of the modi�ed �eld �uctuations, theoretically investigated the radiative properties

of a two-level system in the presence of mirrors using the formalism and method

described in the next chapter.

Experiments performed with spherical SiO2 colloids with two di�erent diameters

doped with Erbium at di�erent concentrations have shown a large di�erence in the

spontaneous emission rate for both colloid sizes [22]. However, two factor in�uences

on the spontaneous decay process, and thus are usually superposed: the modi�ca-

tion of the �eld quantum �uctuations and polarization e�ects [24, 30, 32]. Other

experiments performed with CdSe-CdS core-shell structures show that the involved

dimensions for di�erent samples has signi�cant relevance in the decay process [49],

and studies on the ampli�cation of the spontaneous emission of such synthesized

structures [50] also show such an e�ect.

In the present work, motivated by the above experiments, we extend exactly the

same formalism and method used by Ford et al [19] to investigate the spontaneous

decay rate of a two-level system close to a sphere with a perfectly re�ecting surface

(see Fig. 3.1), i.e., within a �rst-order time-dependent perturbation approach and

method of images it is possible to calculate the appropriate Wightman's function,

and an analytical expression for the decay rate of spontaneous emission. Both exte-
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rior and interior problems are studied. Similarly, we studied the spontaneous decay

rate of a two-level system trapped between perfectly re�ecting concentric spheres

(as shown in Fig. 4.1). Recently, the Casimir e�ect between two spherical shells

was investigated [51]. For the atom trapped between the radii of the concentric

spheres, Wightman's function of the atom incorporates contributions from an in�-

nite set of variable image charges, satisfying Dirichlet boundary conditions. This

approach has been previously used with success in the description of photodetection

processes [52�55], in the investigation of the in�uence of parallel mirrors and strings

on the radiation process [19, 56] and in recent studies of entanglement e�ects on

radiative processes [38,57�62].

This work is organized as follows. In the next chapter, we present the main

aspects of the �rst-order perturbation theory, and that of the method of images

applied to an excited monopole coupled to a Hermitian massless scalar �eld. We

also present the theoretical basis of how a two-level detector interacting with a scalar

�eld in the vacuum state (the formalism used in Ref. [55]) can be described as well as

the calculation of the spontaneous decay rate performed by Ford et al to investigate

the behavior of excited systems placed in the presence of mirrors: decay rate near

one mirror and decay rate in the presence of two mirrors. The next two chapters are

intended to compute the decay rate for the case, in which the two-level system is

placed in the vicinity of a sphere with a perfectly re�ecting surface, and in addition

to calculating the decay rate of the atomic system placed between two concentric

spheres with radii a and b. We provide a detailed analysis on the dependence of

the decay rate on the atom's position, the radius of the sphere as well as on the

frequency of the emitted radiation; and for the case of the spherical shell we analyze

the decay rate on di�erent relationships between the radii of the spheres and the

emitted radiation energy. In the last chapter we summarize our most important

�ndings and present some perspectives for future works. Throughout this text, we

use units of ~ = c = 1.



2
Formalism and method

In this chapter we present the main aspects of the �rst-order perturbation theory,

and the method of images applied to an excited monopole coupled to Hermitian

massless scalar �eld. We also present the theoretical basis of how it can describe a

two-level detector interacting with a scalar �eld in the vacuum state (the formalism

used in Ref. [55]) as well as the calculation of the spontaneous decay rate performed

by Ford et al to investigate the behavior of excited systems placed in the presence of

mirrors: decay rate near one mirror and decay rate in the presence of two mirrors.

2.1 A review on perturbation theory

Let us start with a brief review on perturbation theory and method of images,

coming from quantum mechanics and electromagnetism courses.

2.1.1 Time-independent perturbation theory (non-degenerate

case)

Let us suppose we solve the time-independent Schrodinger equation, and we �nd

the complete set of eigenfunctions Ψn and energy eigenvalues En, as described in
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Eq. 2.1

H0Ψ0
n = E0Ψ0

n ⇒
{

Ψ0
n, E

0
n (eigenfunctions and energy eigenvalues) (2.1)

where 〈Ψ0
n|Ψ0

m〉 = δmn, with δmn = 1 for m = n and δmn = 0 for m 6= n.

Let us assume we apply a small perturbation on the potential in the Schrodinger

equation. Now we are interested the solution of the Schrodinger equation of the

perturbed system given by Eq. 2.2.

HΨn = EΨn ⇒
{

Ψn, En (new eigenfunctions and energy eigenvalues) (2.2)

Note that in Eq. 2.1 we use the index 0 in Ψn to denote the solutions of the non-

perturbed system.

We need to �nd the new eigenfunctions Ψn and new energy eigenvalues En of

the perturbed system. But the perturbed potential introduces certain problems in

Schrodinger equation to be solved using the same rules previously used to solve the

non-pertubed Schrodinger equation, as we learn in elementary courses of quantum

mechanics. In addition, it is necessary to use a systematic procedure to obtain

approximate solutions of Eq. 2.2. The procedure is also known as perturbation

theory. This method allows of solving the Schrodinger equation of the pertubed

system from the exact solutions of the non-perturbed system.

Let us start by writing the Hamiltonian H of the perturbed system as follows

H = H0 + λH
′
, (2.3)

where H0 is the non-perturbed Hamiltonian, H
′
is a perturbation and λ is a small

coe�cient. Writing the eigenfunctions and energy eigenvalues of the Hamiltonian
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H given by Eq. 2.3, we have that, respectively

Ψn = Ψ0
n + λΨ1

n + λ2Ψ2
n + ... (2.4)

En = E0
n + λE1

n + λ2E2
n + ... (2.5)

By substituting the eigenfunctions and energy eigenvalues above for Eq.2.3, and

after some algebraic manipulations as well as grouping of terms, it is possible to

obtain Eq. 2.5.

H0Ψ0
n + λ(H

′
Ψ0
n +H0Ψ1

n) + λ2(H
′
+ Ψ1

n +H0Ψ2
n) + ...

= E0
nΨ0

n + λ(E1
nΨ0

n + E0
nΨ1

n) + λ2(E1
nΨ1

n + E0
nΨ2

n + E2
nΨ0

n) + ... (2.5)

What is more, we can group the terms according to the order of λ coe�cients

likewise and obtain the set of equations below, that provides the corrections in the

eigenfunctions and energy eigenvalues introduced by the pertubation. Eqs. 2.6, 2.7

and 2.8 are used to calculate, respectively the � zero-order�, �rst-order and second-

order corrections. The other corrections can be obtained the same way.

H0Ψ0
n = E0

nΨ0
n (2.6)

H ′Ψ0
n +H0Ψ1

n = E1
nΨ0

n + E0
nΨ1

n (2.7)

H ′Ψ1
n +H0Ψ2

n = E1
nΨ1

n + E0
nΨ2

n + E2
nΨ0

n (2.8)

Notice that in expression 2.6 we have the Schrodinger equation of the non-perturbed

system.

Let us calculate it using Eq. 2.7, the �rst-order corrections in eigenfunction and

energy eigenvalues denoted by Ψ1
n and E1

n. To do this, we use bra-ket notation
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multiplying all terms of expression 2.7 by the corresponding bra 〈Ψ0
n|.

〈Ψ0
n|H

′ |Ψ0
n〉+ 〈Ψ0

n|H0|Ψ1
n〉 = 〈Ψ0

n|E1
n|Ψ0

n〉+ 〈Ψ0
n|E0

n|Ψ1
n〉 (2.9)

⇒ E1
n = 〈Ψ0

n|H
′ |Ψ0

n〉 , (2.10)

that represents the �rst-order correction in the energy eigenvalues. This is simply

the expected value of the perturbation Hamiltonian while the system is in the un-

perturbed state. Rewriting the Eq. 2.7 as follows, we can compute the �rst-order

correction in eigenfunction Ψ1
n.

(H0 − E0
n)Ψ1

n = −(H
′ − E1

n)Ψ0
n (2.11)

We know that the eigenfunctions Ψ0
n of the non-perturbed system are a complete

set. Then, we can express any function f(x) as linear combination of eigenfunctions

from non-perturbed system, given by f(x) =
∑

n cnΨ0
n. Here, we can apply this

consideration to write Ψ1
n.

Ψ1
n =

∑
m 6=n

c(n)
m Ψ0

m (2.12)

Our problem comes down to �nding the coe�cients c
(n)
m , where index n just denotes

that we are interested in the coe�cients of Ψ1
n. Substituting Eq. 2.12 into Eq. 2.11

(H0 − E0
n)
∑
m 6=n

c(n)
m Ψ0

m = −(H
′ − E1

n)Ψ0
n, (2.13)

that can be rewritten as

∑
m6=n

(E0
m − E0

n)c(n)
m Ψ0

m = −(H
′ − E1

n)Ψ0
n. (2.14)

To calculate the coe�cients c
(n)
m it is convenient to return to the bra-ket notation
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and multiply the expression given by Eq. 2.14 by bra 〈Ψ0
l |

∑
m6=n

(E0
m − E0

n)c(n)
m 〈Ψ0

l |Ψ0
m〉 = −〈Ψ0

l |H
′ |Ψ0

n〉+ 〈Ψ0
l |E1

n|Ψ0
n〉. (2.15)

If l = n, the left side of equation vanishes

0 = −〈Ψ0
n|H

′|Ψ0
n〉+ E1

n ⇒ E1
n = 〈Ψ0

n|H
′|Ψ0

n〉, (2.16)

which is equivalent to the expected value of the perturbation Hamiltonian while the

system is in the unperturbed state, already obtained above. This result does not

help us �nd the second-order correction in the eigenfunction. But if l 6= n then:

(E0
l − E0

n)c
(n)
l = −〈Ψ0

l |H
′|Ψ0

n〉. (2.17)

Now, changing index l by m we get the sought coe�cient c
(n)
m

c(n)
m =

〈Ψ0
m|H

′|Ψ0
n〉

(E0
n − E0

m)
. (2.18)

The �rst-order correction in eigenfunction can be written as

Ψ1
n =

∑
m 6=n

〈Ψ0
m|H

′|Ψ0
n〉

(E0
n − E0

m)
Ψ0
m . (2.19)

When two unperturbed states have the same energy, they are named degenerate

states. Note that this expression does not apply to degenerate cases, which is studied

in the next subsection. It is important to stress that the energy given by En ≈

E0
n + E1

n, with corrections up to the �rst-order from perturbative system is very

close to the exact energy. But this does not happen in the eigenfunctions. Here, we

conclude the systematic procedures of the �rst-order perturbation theory.

Take now the expression given by Eq. 2.8 to obtain the second-order corrections

in the energy eigenvalues. Let us start multiplying the mentioned equation by bra
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〈Ψ0
n|, as follows

〈Ψ0
n|H ′|Ψ1

n〉+ 〈Ψ0
n|H0|Ψ2

n〉 = 〈Ψ0
n|E1

n|Ψ1
n〉+ 〈Ψ0

n|E0
n|Ψ2

n〉+ 〈Ψ0
n|E2

n|Ψ0
n〉. (2.20)

After some elementary algebraic procedures it is possible to cancel some terms and

obtain

E2
n =

∑
m 6=n

c(n)
m 〈Ψ0

n|H
′|Ψ0

m〉, where c(n)
m =

〈Ψ0
m|H

′ |Ψ0
n〉

(E0
n − E0

m)
. (2.21)

As it turns, the second-order correction can be written as

E2
n =

∑
m6=n

=
|〈Ψ0

n|H
′ |Ψ0

m〉|2

(E0
n − E0

m)
. (2.22)

This is a fundamental result of second-order perturbation theory.

The procedures already described above are repeated to obtain the other correc-

tions. The complex algebraic manipulations to the calculating the other corrections

should not add additional contents to the results we need in this work. In particular,

we are interested in understanding the process of spontaneous emission, which should

occur through time-dependent perturbation theory, subject of the next subsections.

But before, let us pass to degenerate case.

2.1.2 Time-independent perturbation theory (degenerate case)

We have presented a calculation methodology to obtain the corrections in the

energy eigenvalues and eigenfunctions valid for non-degenerate cases. But what

happens when two eigenstates Ψ0
a e Ψ0

b from Hamiltonian H0 has the same energy

E0
a = E0

b ? Note that 〈Ψ0
a|Ψ0

b〉 = 0. The expressions of the corrections obtained in

the previous subsection cannot be used because they are divergent (See Eqs. 2.19

and 2.22). For cases in which the eigenstates share the same energy, we use the

degenerate perturbation theory.
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Let us begin understanding the theory by presenting the case of double de-

generacy. Afterwars we analyze the degeneracy of higher orders. Applying the

Schrodinger equation to the two states of same energy E0:

H0Ψ0
a = E0Ψ0

a and H0Ψ0
b = E0Ψ0

b . (2.23)

We can create a new state Ψ0 given by linear combination of Ψ0
a and Ψ0

b , with

α and β auxiliary coe�cients to keep the normalization of the states indexed by a

and b, as written below

Ψ0 = αΨ0
a + βΨ0

b . (2.24)

This new eigenstate Ψ0 given by Eq. 2.24 is also eigenfunction from H0, as it is

later demonstrated.

H0Ψ0 = αH0Ψ0
a + βH0Ψ0

b (2.25)

= αE0Ψ0
a + βE0Ψ0

b (2.26)

= E0(αΨ0
a + βΨ0

b) (2.27)

⇒ H0Ψ0 = E0Ψ0 (showing that Ψ0 is eigenfunction from H0.) (2.28)

The Hamiltonian H of the perturbed system is given by H = H0 + λH
′
, where

H
′
is a perturbation introduced in the system. When we apply this perturbation,

the degeneracy rises as λ increases between 0 and 1. In order to solve Schrodinger's

equation HΨ = EΨ of the perturbed system let us invoke the same considerations

already described in subsection 2.1.2, where the corrections on energy eigenvalues

and eigenfunctions are given by:

E = E0 + λE1 + λ2E2 + ... and Ψ = Ψ0 + λΨ1 + λ2Ψ2 + ... (2.29)

Similar to the calculations of the previous subsection, i. e., by substituting Eqs.
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2.29 in Schrodinger's equation and comparing the terms according to the λ order,

we obtain the �rst-order equation

H0Ψ1 +H
′
Ψ0 = E0Ψ1 + E1Ψ0, (2.30)

which, multiplied by the correspondent bra 〈Ψ0
a|, can be rewritten

〈Ψ0
a|H0|Ψ1〉+ 〈Ψ0

a|H
′ |Ψ0〉 = E0〈Ψ0

a|Ψ1〉+ E1〈Ψ0
a|Ψ0〉. (2.31)

By replacing the Eqs. 2.23 and 2.24 for Eq. 2.31 and after some simple algebraic

procedures, we obtain

α〈Ψ0
a|H

′ |Ψ0
a〉+ β〈Ψ0

a|H
′ |Ψ0

b〉 = E
′
α. (2.32)

This expression is commonly written as

αWaa + βWab = E1α, (2.33)

where a generic Wij = 〈Ψ0
i |H

′|Ψ0
j〉, being matrix elements of H

′
.

If we had multiplied the Eq. 2.30 by the bra 〈Ψ0
b | instead of bra 〈Ψ0

a|, we would

have obtained the following equation

αWba + βWbb = E1β. (2.34)

We can group Eqs. 2.33 and 2.34 in matricial notationWaa Wab

Wba Wbb

α
β

 = E1

α
β

 (2.35)

Notice that the terms of the matrix aboveWij = 〈Ψ0
i |H

′|Ψ0
j〉 are the matrix elements

of perturbation H
′
related to the states Ψ0

a and Ψ0
b . This matrix representation is
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well known in linear algebra, where E1 represents the eigenvalues of the matrix with

elements Wij = 〈Ψ0
i |H

′ |Ψ0
j〉, and

α
β

 represents the eigenfunctions. But here, it is

su�cient to solve the system given by Eqs. 2.33 and 2.34. After some simpli�cations,

we have

WabWba + (E1 −Waa)(Wbb − E1) = 0. (2.36)

This expression is a quadratic equation and has two roots denoted E1
± given by

E1
± =

1

2

[
(Waa +Wbb)±

√
(Waa −Wbb)2 + 4|Wab|2

]
, (2.37)

which is a fundamental result of the perturbation theory for the degenerate case,

representing the corrections of �rst-order in the energy eigenvalues.

An interesting particular case occurs when α = 0. For this value E1 = Wbb.

In addition, if α = 0 then β = 1 by the normalization condition. See that in Eq.

2.33, under these conditions, Wab = Wba = 0. On the other hand, it is possible to

conclude that E1
− = Wbb and E

1
+ = Waa. But if we remember

E1
+ = Waa = 〈Ψ0

a|H
′|Ψ0

a〉 and E1
− = Wbb = 〈Ψ0

b |H
′|Ψ0

b〉. (2.38)

Note also that when α = 0 then Ψ0
+ = Ψ0

a and Ψ0
− = Ψ0

b . Now, consider the following

theorem that helps to �nd the linear combinations that are really of physical interest,

as occurred for α = 0 and β = 1 and, therefore, Wab = Wba = 0.

Theorem: Let A be a Hermitian operator. Consider [A,H0] = 0 and [A,H
′
] = 0

and Ψ0
a, Ψ0

b are degenerate eigenstates of H
0 and also non-degenerate eigenstates of

A, being ν and µ (with ν 6= µ) energy eigenvalues of Ψ0
a and Ψ0

b , respectively. Then,

Wab = 0.
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Proof:

[A,H
′
] = 0 (2.39)

〈Ψ0
a|[A,H

′
]|Ψ0

b〉 = 0 (2.40)

〈Ψ0
a|AH

′ −H ′A|Ψ0
b〉 = 0 (2.41)

〈Ψ0
a|AH

′ |Ψ0
b〉 − 〈Ψ0

a|H
′
A|Ψ0

b〉 = 0 (2.42)

ν〈Ψ0
a|H

′|Ψ0
b − µ〈Ψ0

a|H0|Ψ0
b〉 = 0 (2.43)

(ν − µ)〈Ψ0
a|H

′|Ψ0
b〉 = 0 (2.44)

as ν 6= µ then Wab = 0 (2.45)

When Wab = 0, Ψ0
a and Ψ0

b are the eigenstates of physical interest that are eingen-

states of Eq. 2.35.

We have studied so far the second-order perturbation theory. To analyse the

higher-order perturbation theory, it is necessary to generalize the matricial equation

given by to expression 2.35 and construct the characteristic equation using the ma-

trix elements Wij = 〈Ψ0
i |H

′|Ψ0
j〉. In this case, it is possible to obtain the �rst-order

correction in the energy E1.
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2.1.3 Time-dependent perturbation theory

We have seen so far the so-called quantum statistics, where the potential depends

just on the position

V (~r, t) = V (~r). (2.46)

Hence, wave function Ψ(~r, t) in time-dependent Schrodinger equation could be sep-

arated by the product of two parties: the �rst part is dependent just on position

ψ(~r) and the second part is dependent just on time φ(t).

HΨ(~r, t) = i~
∂Ψ(~r, t)

∂t
(2.47)

Ψ(~r, t) = ψ(~r)φ(t), where φ(t) ≈ e−
it
~ , (2.48)

and ψ(~r) leads the independent-time Schrodinger equation Hψ = Eψ. Note that

|Ψ|2 = |ψ(~r)|2. This is the relevant physical quantity. Observe that all expected

probabilities and values are constant over time due to this expression |Ψ|2 = |ψ(~r)|2.

Sometimes we even have states that we call stationary states ψi. These states

also sometimes are not dependent on the time. But remember more elementary

courses which state that although a linear combination of these stationary states

could depend on time, and expected values of the energies and probabilities remain

constant in time.

Here, we are interested in investigating a change of state of Ei energy to the

Ej energy. Then, it is necessary that the system makes a transition between the

mentioned states. This transition is also named �quantum jump�. The transition

phenomena cannot be explained using the formalism studied in the last subsections.

In order to fully understand that, a time-dependent potential (V (~r, t)) must be

inserted into the system, which means approaching a �eld in Physics known as
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quantum dynamics.

There are few real solvable problems in quantum dynamics, but the solved prob-

lems are physically valuable. Fortunately, if the time-dependent part of the Hamil-

tonian (H
′
(t)) is much smaller than the independent part of time (H0), the time-

dependent part can be treated as a perturbation (H
′
(t) � H0). Based on those

considerations we develop the time-dependent perturbation theory to study an im-

portant physical phenomena: the emission and absorption of radiation by atoms.

Let us start with two-level system

H0Ψa = EaΨa and H0Ψb = EbΨb, with 〈Ψi|Ψj〉 = δij (i, j = a, b). (2.49)

Any state can be expressed as a linear combination of these two states (ψa and

ψb), including the state described in Eq. 2.50

Ψ(0) = caψa + cbψb. (2.50)

If there is no perturbation, Eq. 2.50 evolves as we already know, with its

characteristic exponential factor and the time-dependent wave function is given by

Ψ(t) = caψae
−iEat~ + cbψbe

−iEbt~ . (2.51)

Physically, the coe�cients |ca|2 are the probability of the system to be in the

ψa state, and |cb|2 the probability of the system to be in the ψb state. The square

modulus of coe�cients ca and cb are also associated with the measuring of energies

Ea and Eb, respectively. Notice that |ca|2 + |cb|2 = 1.

But what occurs in the perturbation system? Now we introduce a perturbation

H
′
(t) in the complete Hamiltonian H = H0 +H

′
. In this case, the total Hamiltonian

H depends on time, and Eq. 2.51 must be generalized by introducing the temporal
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dependence in the coe�cients. The time-dependent wave function can be written as

Ψ(t) = ca(t)ψae
−iEat~ + cb(t)ψbe

−iEbt~ . (2.52)

We need to investigate the new time-dependent coe�cients. See a simple example

for a speci�c time t = t1 and the system in the Ψ(t1) = Ψa. Well, then we have

that ca(t1) = 1 and cb(t1) = 0. At a later time t = t2 we �nd that ca(t2) = 0 and

cb(t2) = 1. Then, in such conditions we know that the particle is in Ψ(t2) = Ψb.

We say that the system had a transition from Ψa state to Ψb state. That is better

visualized by following relations:
t = t1

Ψ(t1) = Ψa

ca(t1) = 1; cb(t1) = 0

⇒


t = t2

Ψ(t2) = Ψb

ca(t2) = 0; cb(t2) = 1.

(2.53)

To solve the problem let us to calculate ca(t) and cb(t), with condition that Ψ(t)

satis�es the time-dependent Schrodinger equation.

H = H0 +H
′
(t) (2.54)

HΨ = i~
∂Ψ

∂t
(2.55)

HΨ = i~
∂Ψ

∂t
(2.56)

Let us substitute the Eqs. 2.52 and 2.54 for equation 2.56

(H0 +H
′
(t))(ca(t)ψae

−iEat~ + cb(t)ψbe
−iEbt~ ) (2.57)

= i~
∂Ψ

∂t
(ca(t)ψae

−iEat~ + cb(t)ψbe
−iEbt~ ) (2.58)
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ca(t)[H
0ψa]e

−iEat~ + cb(t)[H
0ψb]e

−iEbt~ + ca(t)[H
′
(t)ψa]e

−iEat~ (2.59)

+cb(t)[H
′
(t)ψb]e

−iEbt~ = i~[ċa(t)ψae
−iEat~ + ċb(t)ψbe

−iEbt~ (2.60)

+ca(t)ψa(
−iEa
~

)e−i
Eat
~ + cb(t)ψb(

−iEb
~

)e−i
Ebt

~ ] (2.61)

Assuming that H0ψa = Eaψa and H
0ψb = Ebψb in the expression above, and after

some algebraic simpli�cations that imply in cancellation of similar terms

ca(t)[H
′
(t)ψa]e

−iEat~ + cb(t)[H
′
(t)ψb]e

−iEbt~ (2.62)

= i~ċa(t)ψae−i
Eat
~ + i~ċb(t)ψbe−i

Ebt

~ . (2.63)

Multiplying all terms of this equation by the bra 〈ψa|

ca(t)〈ψa|H
′
(t)|ψa〉e−i

Eat
~ + cb(t)〈ψa|H

′
(t)|ψb〉e−i

Ebt

~ = i~ċa(t)e−i
Eat
~ . (2.64)

Introducing the notation H
′
i,j = 〈ψi|H

′
(t)|ψj〉 (with j, j = a, b), we can rewrite this

expression as follows

ċa(t) = − i
~

[ca(t)H
′

aa + cb(t)H
′

abe
−i[Eb−Ea]t

~ ]. (2.65)

Similarly, we could have multiplied Eq. 2.63 by 〈ψb| and obtained

ċb(t) = − i
~

[ca(t)H
′

bae
+i[Eb−Ea]t

~ + cb(t)H
′

bb]. (2.66)

Notice that using the Eqs. 2.65 and 2.66 we can �nd ċa(t) and ċa(t). These

equations are completely equivalent to the time-dependent Schrodinger equation

and can be written in a matricial notation given byċa(t)
ċb(t)

 =
−i
~

 H
′
aa H

′

abe
−i[Eb−Ea]t

~

H
′

bae
+i[Eb−Ea]t

~ H
′

bb

ca(t)
cb(t)

 . (2.67)
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Usually H
′
aa = H

′

bb = 0 and the terms of the matrix equation take a simpler form

ċa(t) = − i
~
H
′

abe
−i[Eb−Ea]t

~ cb(t). (2.68)

ċb(t) = − i
~
H
′

bae
+i[Eb−Ea]t

~ ca(t). (2.69)

Let us denote ω0 = Eb−Ea
~ and note that ω0 > 0 when Eb − Ea > 0. Eqs. 2.68 and

2.69 can be rewritten as follows

ċa(t) = − i
~
H
′

abe
−iω0tcb(t). (2.70)

ċb(t) = − i
~
H
′

bae
+iω0tca(t). (2.71)

So far, all presented procedures are exact and we make no suppositions on per-

turbation H
′
(t). For a small pertubation H

′
, we can solve the Eqs. 2.70 and 2.71

using a process of successive approximations named time-dependent perturbation

theory. To apply this process let us suppose that the system is in a state where

ca(0) = 1 and cb(0) = 0. It is important to emphasize that without the perturba-

tion, the system would keep itself forever in such a condition. For this case, we are

describing the zero-order, i.e, without perturbation.

Zero-order:

c(0)
a (t) = 1 and c

(0)
b (t) = 0. (2.72)

Higher-orders:

d

dt
c(n+1)
a (t) = − i

~
H
′

abe
−iω0tc

(n)
b (t). (2.73)
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d

dt
c

(n+1)
b (t) = − i

~
H
′

bae
+iω0tc(n)

a (t). (2.74)

Having coe�cients of n-order we can obtain the (n+ 1)-order coe�cients. This way

let us calculate the corrections.

First-order (n = 1):

d

dt
c(1)
a (t) = − i

~
H
′

abe
−iω0t0⇒ c(1)

a (t) = 1 (a constant). (2.75)

d

dt
c

(1)
b (t) = − i

~
H
′

bae
+iω0t1. (2.76)

⇒ c
(1)
b (t) = − i

~

∫ t

0

H
′

ba(t
′
)eiω0t

′

dt
′
. (2.77)

This result represents the �rst-order correction. Let us calculate the second-order

correction.

Second-order (n = 2):

d

dt
c(2)
a (t) = − i

~
H
′

abe
−iω0tc

(1)
b (t) (2.78)

= − i
~
H
′

abe
−iω0t(− i

~
)

∫ t

0

H
′

ba(t
′
)eiω0t

′

dt
′

(2.79)

⇒ d

dt
c(2)
a (t) =

−1

~2
H
′

abe
−iω0t

[∫ t

0

H
′

ba(t
′
)eiω0t

′

dt
′

]
(2.80)

⇒ c(2)
a (t) =

−1

~2

∫ t

0

H
′

abe
−iω0t

′
[∫ t

′

0

H
′

ba(t
′′
)eiω0t

′′

dt
′′

]
dt
′

(2.81)

Let us calculate the c
(2)
b (t)

d

dt
c

(2)
b (t) = − i

~
H
′

bae
+iω0tc(1)

a (t). (2.82)
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But c
(1)
a (t) = 1. Let us therefore continue

⇒ c
(2)
b (t) = − i

~

∫ t

0

H
′

bae
+iω0t

′

dt
′
= c

(1)
b (t) . (2.83)

The used methodology can be extended to calculate the other corrections.

2.1.4 Time-dependent perturbation theory - emission and ab-

sorption

Let us apply the time-dependent perturbation theory to study the emission and

absorption of radiation. But �rst let us study a type of perturbation that can help

us characterize the emission and absorption processes of radiation, named sinusoidal

perturbations. This type of perturbation can be written as

H
′
(~r, t) = V (~r) cos(ωt). (2.84)

Now, to calculate the corrections we need to obtain the element H
′

ba, as described

in previous subsection.

H
′

ba = 〈ψb|H
′ |ψa〉 = 〈ψb|V (~r) cos(ωt)|ψa〉 (2.85)

⇒ H
′

ba = 〈ψb|V (~r)|ψa〉 cos(ωt) = Vba cos(ωt) (with Vba ≡ 〈ψb|V (~r)|ψa〉) (2.86)

Using time-dependent perturbation theory, the �rst-order corrections can be ob-

tained as follows:

cb(t) ≈ −
i

~

∫ t

0

H
′

ba(t
′
)eiω0t

′

dt
′

(2.87)

cb(t) ≈ −
iVba
~

∫ t

0

cos(ωt
′
)eiω0t

′

dt
′

(2.88)
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eiωt
′
+ e−iωt

′

2
= cos(ωt

′
) (remembering of this identity) (2.89)

⇒ cb(t) ≈ −
iVba
2~

∫ t

0

[ei(ω0+ω)t
′

+ e−i(ω0−ω)t
′

]dt
′

(2.90)

Solving the above integral

cb(t) ≈ −
iVba
2~

[
ei(ω0+ω)t

′

i(ω0 − ω)
+
ei(ω0−ω)t

′

i(ω0 − ω)

]t
0

(2.91)

⇒ cb(t) ≈ −
iVba
2~

[
ei(ω0+ω)t − 1

i(ω0 + ω)
+
ei(ω0−ω)t − 1

i(ω0 − ω)

]
(2.92)

⇒ cb(t) ≈ −
Vba
2~

[
ei(ω0+ω)t − 1

(ω0 + ω)
+
ei(ω0−ω)t − 1

(ω0 − ω)

]
(2.93)

If ω → ω0 ⇒ ω0 + ω � ω0 − ω. Notice that the �rst term of the sum between

brackets in Eq. 2.93 is negligible compared to the second term. In such a condition

the Eq. 2.93 can be simpli�eld

cb(t) ≈ −
Vba
2~

[
ei(ω0−ω)t − 1

(ω0 − ω)

]
(2.94)

⇒ cb(t) ≈ −
Vba
2~
ei(ω0−ω)t/2

[
ei(ω0−ω)t/2 − e−i(ω0−ω)t/2

(ω0 − ω)

]
(2.95)

ei(ω0−ω)t/2 − e−i(ω0−ω)t/2

2i
= sin(ω0 − ω)t/2 (remembering of this identity) (2.96)

⇒ cb(t) ≈ −
Vba
~

sin(ω0 − ω)t/2

ω0 − ω
ei(ω0−ω)t/2 (2.97)

But the physical interest is in the calculation of the transition probability from a to

b, given by Pa→b(t) = |cb(t)|2.

Pa→b(t) = |cb(t)|2 ≈
|Vba|2

|~|2
sin2(ω0 − ω)t/2

(ω0 − ω)2
(2.98)
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See that the maximum probability value is Pmax(t) = | |Vba|~(ω0−ω)
|2, and the expression

of the probability oscillates between 0 and 1. Notice that | |Vba|~(ω0−ω)
|2 � 1, in reason

of the hypothesis of small perturbation. Equation 2.98 is plotted in Fig. 2.1.

Figure 2.1: Transition probability as time function. | |Vba|~(ω0−ω)
|2 � 1 is the maximum

value of probability.

The Fig. 2.1 shows the transition probability of the system between the ψa and

ψb states.

Here, it is already possible to understand the phenomenon of absorption, stimu-

lated emission, and spontaneous emission of radiation. Consider an atomic system

in a lower energy state ψa being irradiated by monochromatic light. Then, the

transition probability to a higher energy state ψb, can be calculated using the Eq.

2.98, already deduced above. The incident monochromatic light can be treated as a

perturbation, and we know from elementary courses of electrodynamics, as well as

quantum mechanics courses, that perturbation can be written as Vba = −pE0 (where

p→ dipole moment and E0 → monochromatic electric �eld). See references [63,64]
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for a broader study. For this system the transition probability is given by

Pa→b(t) = |cb(t)|2 ≈

(
pE0

~

)2
sin2(ω0 − ω)t/2

(ω0 − ω)2
. (2.99)

To make the transition, the system absorbed the energy of the �eld Eb − Ea = ~ω.

We say that the system �absorbed� a photon. Notice that Pba(t) = Pab(t). This is a

curious fact known as stimulated emission, in which an incident photon of speci�c

frequency can interact with an excited atomic electron, or other excited molecular

state, bringing it to a lower energy level. In this case the released energy is trans-

ferred to the electromagnetic �eld, creating a new photon with a phase, frequency,

polarization, and direction of travel identical to the photons of the incident wave,

as discussed in chapter 1 (See Fig. 1.1).

The physical system may, however, spontaneously decay from a higher energy

state to a lower energy state in a process called spontaneous emission. Spontaneous

emission cannot be explained using the classical electromagnetic theory and is con-

sidered as a fundamentally quantum process. A physical explanation for spontaneous

emission generally invokes the zero-point energy of the electromagnetic �eld [2], as

also discussed in chapter 1. There are some methods for calculating the sponta-

neous emission rate, such as through the Einstein's coe�cients as well as the se-

lection rules that are also useful for calculating the spontaneous emission rate (See

references [63,64] for a complete study).

Time-dependent perturbation theory (Dyson's series)

Only a few class of problems are exactly solved using the formalism to obtain

the �rst-order, second-order corrections and so on, discussed in subsection 2.1.3

for a two-level system. We need to be satis�ed with the approximate perturbative

expansion given by Eq. 2.100,

cn(t) = c(0)
n + c(1)

n + c(2)
n + ..., (2.100)
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where c
(1)
n , c

(2)
n , ... are mentioned corrections.

Similar to the result provided by the Eq. 2.72, to obtain the all corrections

given by the right-side of the Eq. 2.100 in a more general case, we must consider

c
(0)
n = δnl (independent of t), as already deducted for a two-level system. To obtain

the other corrections (c
(1)
n , c

(2)
n ,...) is enough successive substitutions in a broader

matricial equation then the Eq. 2.67. This is the development methodology of the

time-dependent perturbation theory attributed to Dirac.

Another methodology, very powerful, applicable to more general and advanced

problems, such as relativistic quantum �eld theory and many-body theory, it is to

work with evolution operator UI(t, t0) instead of cn(t) in the interaction picture (see

Ref. [64]).

Let us de�ne the time-evolution operator in the interaction picture

|α, t0; t〉I = UI(t, t0)|α, t0; t0〉I . (2.101)

The Schrodinger di�erential equation for the state ket in the interaction picture can

be written as

i~
d

dt
UI(t, t0) = VI(t)UI(t, t0). (2.102)

Under the initial condition given by the below equation

UI(t, t0)|t=t0 = 1, (2.103)

the di�erential equation given by expression 2.102 is analogous to the integral equa-

tion

UI(t, t0) = 1− i

~

∫ t

t0

VI(t
′
)UI(t

′
, t0)dt

′
. (2.104)
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By iteration, it is possible to obtain an approximate solution to the Eq. 2.104

UI(t, t0) = 1− i

~

∫ t

t0

VI(t
′
)

[
1− i

~

∫ t
′

t0

VI(t
′′
)UI(t

′′
, t0)dt

′′

]
dt
′
, (2.105)

And so on, as follows

UI(t, t0) = 1− i

~

∫ t

t0

VI(t
′
) +

(
−i
~

)2 ∫ t

t0

dt
′
∫ t

′

t0

dt
′′
VI(t

′
)VI(t

′′
) (2.106)

+...+

(
−i
~

)n ∫ t

t0

dt
′
∫ t

′

t0

dt
′′
...

∫ t(n−1)

t0

dt(n)VI(t
′
)VI(t

′′
)...VI(t

(n)) + ... (2.107)

It is important to stress that after Freeman J. Dyson applied with success the

method described to covariant quantum electrodynamics (QED), the series above

passed to be nominated Dyson series.

Knowing UI(t, t0) we can determine the evolution of a state ket at the any t,

since the initial state t = 0

|i, t0 = 0; t〉I = UI |i〉 (2.108)

=
∑
n

|n〉〈n|UI(t, 0)|i〉, (2.109)

where 〈n|UI(t, 0)|i〉 is associated to the cn(t), as we will see follow. The conec-

tion between the evolution operator U(t, t0) in Schrodinger picture with UI(t, t0) in

interaction picture can be obtained:

|α, t0; t〉I = e
iH0t
~ |α, t0; t〉S (2.110)

= e
iH0t
~ U(t, t0)|α, t0; t〉S (2.111)

= e
iH0t
~ U(t, t0)e

−iH0t0
~ |α, t0; t0〉t (2.112)

UI(t, t0) = e
iH0t
~ U(t, t0)e

−iH0t0
~ . (2.113)
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Thus we have

〈n|UI(t, t0)|i〉 = e
t(Ent−Eit0)

~ 〈n|U(t, t0)|i〉, (2.114)

And now we can compute the transition probability looking to the matrix element

between energy eigenstates of H0. The transition probability is de�ned as the square

of the modulus 〈n|U(t, t0)|i〉.

|〈n|UI(t, t0)|i〉|2 = |〈n|U(t, t0)|i〉|2. (2.115)

Consider the system in a physical situation which t = t0. Now, applying the

interaction picture, we have

|i, t0; t0〉s = e
−iEtt0

~ |i〉, (2.116)

So in the interaction picture we obtain a simple equation.

|i, t0; t0〉I = |i〉 (2.117)

Let us write the state ket at a later time

|i, t0; t〉I = UI(t, t0)|i〉. (2.118)

Notice that, if we compare Eq. 2.118 with the expansion given by equation

|i, t0; t〉I =
∑
n

cn(t)|n〉, (2.119)

we observe an interesting result

cn(t) = 〈n|UI(t, t0)|i〉. (2.120)
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This result shown by Eq. 2.120, if we compare with pertubation expansion for

UI(t, t0) substituted in Eq. 2.120, provides

c(0)
n (t) = δnl independent of t (2.121)

c(1)
n (t) =

−i
~

∫ t

t0

〈n|VI(t
′
)|i〉dt′ =

−i
~

∫ t

t0

elωnlt
′

Vnl(t
′
)dt

′
(2.122)

c(2)
n (t) =

(
−i
~

)2∑
n

∫ t

t0

dt
′
∫ t

′

t0

dt
′′
elωnlt

′

Vnme
lωmlt

′′

Vml(t
′′
) (2.123)

Remembering that

e
l(En−Et)t

~ = elωnlt. (2.124)

The transition probability for |i〉 → |n〉 (with n 6= i) is given by

P (i→ n) = |c(1)
n (t) + c(2)

n (t) + ...|2. (2.125)

The fundamentals of the perturbation theory presented so far, in particular, the

formalism of the �rst-order time-dependent perturbation approach, will be useful in

the next chapters.

2.2 The method of images

From electrodynamics courses, we know the uniqueness theorem for Poission's

(O2V = ρ/ε0) or Laplace's equations (O2V = 0). In particular, whatever the method

whereby the solution of Laplace's equation is obtained, the solution is that, and no

other. Frequently, it is not easy to obtain an analytic solution to either of these equa-

tions. Even when it is possible to do so, it may require a solid mathematical basis.
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Fortunately, we can conjecture the real physical situation with another situation,

constructed in an intuitive way, but which satis�es the same boundary conditions of

the real problem. Then, we can apply the uniqueness theorem of Laplace's equation

to solve the intuitive problem. This method is named as method of images, and it

is used to calculate the potential function an arbitrary position of the space caused

by the q charge in the presence of a spherical surface, as we show follow.

In both cases, real and intuitive situation, the solution V (potential function) of

the Laplace's equation must satis�es the Dirichlet boundary condition, i. e., V = 0

at all points at the surface or other type of envolved limits. Using the method of

images considering the function G(~r) analogous to the electric �eld to characterize

the modulus of the total electric �eld caused by the set of real and image charges

shown in Fig. 2.2. As we know G(~r) is composed by the sum of the electric �eld of

Figure 2.2: Schematic view for a real charge and its image (exterior problem).

the real charge and its respective image q
′
, satisfying Dirichlet conditions.

G(~r) =
q

R2
+

q
′

R′2
, (2.126)
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where R and R′ are obtained of the law of cosines

R2 = r2 + a2 − 2ra cos θ (2.127)

R
′2 = r2 + b2 − 2rb cos θ. (2.128)

Notice that R and R
′
are indicated in Fig. 2.2 and denote the position of point P

in relation to the real charge and image charge, respectively. In addition, the other

parameters are: a → charge's position, b → images's position and A → radius of

the sphere.

The function G(~r) can be written as

G(~r) =
q

r2 + a2 − 2ra cos θ
+

q
′

r2 + b2 − 2rb cos θ
. (2.129)

In order to obtain the position b and the value of the image charge q
′
, we can

consider the Dirichlet boundary condition, because if G vanishes at all points on the

spherical surface, G is null in the Q and S points (G(Q) = G(S) = 0). Applying

this condition it is possible to obtain b and q
′
as described below.

q

(a− A)2
+

q
′

(A− b)2
= 0 (2.130)

q

(a+ A)2
+

q
′

(A+ b)2
= 0 (2.131)

q(A− b)2 + q
′
(a− A)2 = 0 (2.132)

q(A+ b)2 + q
′
(a+ A)2 = 0 (2.133)
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q
′
= −q (A− b)2

(a− A)2
(2.134)

q(A+ b)2 − q (A− b)2

(a− A)2
(a+ A)2 = 0 (2.135)

�q(A+ b)2 + (a− A)2 − �q(A− b)
2(a+ A)2 = 0 (2.136)

(A+ b)(a− A)− (A− b)(a+ A) = 0 (2.137)

Aa− A2 + ba− bA− (Aa+ A2 − ba− bA) = 0 (2.138)

��Aa− A2 + ba−��bA−��Aa− A2 + ba+��bA = 0 (2.139)

−�2A
2 + �2ba = 0 (2.140)

As it turns

b =
A2

a
, (2.141)

which represents the searched position of the image charge. Substituting Eq. 2.141

in Eq. 2.134

q
′
= q

(A− A2

a
)2

(a− A)2
= −q

(Aa−A
2

a
)2

(a− A)2
(2.142)

q
′
= −q [A(a− A)]2

(a− A)2
= −qA2�����(a− A)2

a2

1

�����(a− A)2 , (2.143)

Thus, we have the value of the image charge q
′
and its sign is opposite to the atom

q
′
= −qA

2

a2
. (2.144)

The interior problem, when the atom is positioned in the interior region of the

sphere is shown in Fig. 2.3. In this case, the opposite image charge emerges in the

exterior region. Now, the parameters a is the images's position, ρ is the charges's

position and A is the radius of the sphere. Here, the charge and its images remains
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Figure 2.3: Schematic view for a real charge and its image (interior problem).

denoted by the q and q
′
, respectively. The G(~r) can be written as

G(~r) =
q

R2
+

q
′

R′2
. (2.145)

As ~R = ~r−~ρ and ~R′ = ~r−~a the parameters that appear in Eq. 2.145 are calculated

of the same way for the exterior problem (atom positioned in exterior region of the

sphere).

G(~r) =
q

r2 + ρ2 − 2rρ cos θ
+

q
′

r2 + a2 − 2ra cos θ
(2.146)

From the Dirichlet boundary conditions, in particular, of G(Q) = G(S) = 0, we

have

q

(A− ρ)2
+

q
′

(a− A)2
= 0 (2.147)

q

(A+ ρ)2
+

q
′

(a+ A)2
= 0 (2.148)



2.3 A theoretical model for understanding the spontaneous emission

processes 36

Therefore, solving the system of above equations

a =
A2

ρ
and q

′
= q

A2

ρ2
. (2.149)

A very interesting fact in the values of the position and image charge given by the

Eq. 2.149 is the similarity with the obtained values of the external problem. These

parameters are such as we would have if we physically look to the Fig. 2.3 and

imagining the Fig. 2.2, that is, by permute the positions of the atom and its image.

The results of this section is useful in the chapters 3 and 4 to calculate the spon-

taneous emission rate of a two-level system positioned in the vicinity of a perfectly

re�ecting spherical surface as well as for the same atomic system positioned between

concentric spheres. In these chapters, the results of this subsection will be extended.

2.3 A theoretical model for understanding the spon-

taneous emission processes

Let us start by reviewing the standard theoretical description of the radioactive

processes of atoms. Here, we consider the simplest model for the coupling between

the atom and the �eld that captures the essential features associated with the spon-

taneous emission processes, where the atom is represented by a two-level monopole

system, which is coupled to a Hermitian massless scalar �eld. The interaction Hamil-

tonian at time τ can be written as

Hint(τ) = c1m(τ)φ(x(τ)), (2.150)

where c1 is a small coupling constant, m(τ) is the monopole operator of the atom,

and φ(x) is the scalar �eld operator at the atom's position. This model has been

previously used to describe a detector of scalar �elds excitations [52,53,55] as well as

to study the spontaneous decay of quantum entangled atoms [38,57�61]. The general
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formalism presented here is exactly the same formalism used in photo-detection

theory [65].

The system's Hilbert space is taken as the direct product of the Hilbert space

of the atom and the quantized �eld H = HA ⊗HF . The total Hamiltonian can be

generally written as

H = HA +HF +Hint, (2.151)

where HA is the non-interacting atom's Hamiltonian, HF is the Hamiltonian of the

free �eld and Hint represents the coupling between the atom and the vacuum �eld.

In order to investigate the spontaneous decay process, we consider the initial state

of the system as being in the form |τi〉 = |e〉 ⊗ |φi〉, where |e〉 is the excited state of

the atom and |φi〉 is the �eld in initial vacuum state. In the interaction picture, the

evolution of the combined atom-�eld system is obtained by Schrodinger's equation

i
∂

∂τ
|τ〉 = Hint|τ〉, (2.152)

And the time evolution of the combined atom-�eld state is governed by the evolution

operator

U(τf , τi) = 1− i
∫ τf

τi

Hint(τ
′)U(τ ′, τi)dτ

′. (2.153)

From equation 2.152, the state of the system at time τ can be formally written as

|τf〉 = U(τf , τi)|τi〉. In the regime of weak atom-�eld coupling, the interaction Hamil-

tonian can be taken as a small perturbation. Up to �rst-order in the perturbation

expansion, the evolution operator assumes the simpler form

U(τf , τi) = 1− i
∫ τf

τi

Hint(τ)dτ. (2.154)

The probability amplitude for the transition from the initial state at τi into the �nal
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state |g〉 ⊗ |φf〉 is given by

〈gφf |U(τf , τi)|eφi〉 = −i
∫ τf

τi

〈gφf |Hint(τ)|eφi〉dτ, (2.155)

where |φf〉 is an arbitrary state of the �eld and |g〉 is the atom's ground state.

Within this approach, the transition probability from the atom's excited state

at τi into the ground state at τf is given by

P (E, τ) = c2
1|〈e|m(0)|g〉|2F (E, τf ), (2.156)

where the term c2
1|〈e|m(0)|g〉|2 is known as the atom's selectivity and F (E, τf ) is

the �eld's response function

F (E, τf , τi) =

∫ τf

τi

dτ ′
∫ τf

τi

dτ ′′e−iE(τ ′−τ ′′) × 〈Φi|φ(x(τ ′))φ(x(τ ′′))|Φi〉. (2.157)

If we want to know in which state the atom will be at time τ = τf , let us suppose

that the initial state of the �eld is the vacuum state, |Φi〉 = |0〉. In this case, in Eq.

2.157 we are using the positive Wightman function associated with the scalar �eld

and evaluated on the world line of the atom, with the assumption that at τ = τi = 0

the atom in the excited state and the �eld in the vacuum state. Then Eq. 2.157 can

be written as,

F (E, τ) =

∫ τ

0

dτ

∫ τ

0

dτ ′e−iE(τ−τ ′)G+(x(τ), x(τ ′)). (2.158)

Here E = Ee − Eg > 0 represents the frequency ω = E (in units of ~ = 1 of the

emitted radiation). G+(x(τ), x(τ ′)) = 〈0|φ(x(τ))φ(x(τ ′))|0〉 is the positive scalar

�eld Wightman function in the vacuum �eld state |0〉. This function includes the

vacuum fIuctuation contributions and can provide the change in the probability of

transition when we introduce boundaries into the excited system.
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2.4 A two-level detector interacting with a scalar

�eld in the vacuum state in empty space

Here, we are interested in measuring the activity of the scalar �eld in the vacuum

state along the world line of a two-level system. Then Wightman's function that

appears in Eq. 2.158 takes the general form [55]

G+(x(t′), x(t′′)) = − 1

(4π)2

1

(∆t)2 − (x′ − x′′)2
. (2.159)

The Wightman function associated with an inertial detector that travels in the

world line xµ(τ) is dependent only on time interval between the two points, and the

Eq. 2.159 is simpli�eld to

G+(x(τ), x(τ ′)) = − 1

(4π)2

1

(∆τ − iε)2
, (2.160)

where ∆τ = τf − τi and the ε was introduced to the correct speci�cation of the

singularities in Wightman function in the empty Minkowski space. Note that (1 −

v2)1/2 is absorbed in iε. In such conditions, making the following change of variables

ζ = τ − τ ′ and η = τ + τ ′ we can use the expression discussed in previous section

given by Eq. 2.158, but now written to any time interval, just replacing the null

initial time by that at any instant of time τi, to obtain

F (E,∆τ) = − 1

4π2

∫ ∆τ

−∆τ

dζ(∆τ − |ζ|)e−iEζ 1

(ζ − iε)2
. (2.161)

Note that this last equation can be separated into two equations as follows

F (E,∆τ) = FI(E,∆τ) + FII(E,∆τ), (2.162)
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where

FI(E,∆τ) = − 1

4π2

∫ ∆τ

−∆τ

dζ∆τ
e−iEζ

(ζ − iε)2
(2.163)

and

FII(E,∆τ) =
1

4π2

∫ ∆τ

−∆τ

dζ
|ζ|e−iEζ

(ζ − iε)2
. (2.164)

Using complex variable methods the integrals given by equations 2.163 and 2.164

can be solved taking the limit ε → 0 and using the Cauchy theorem, providing the

equation

∫ ∆τ

−∆τ

dζ
e−iEζ

(ζ − iε)2
= 2πiRes

[
e−iEζ

(ζ − iε)2
; iε

]
Θ(−E)−

∫
R/[τi,τf ]

dζ
e−iEζ

(ζ − iε)2
(2.165)

= 2πEΘ(−E)− 2

∫ ∞
∆τ

dζ
cosEζ

ζ2
, (2.166)

that we replace in Eq. 2.162, and after some manipulations, we obtain

FI(E,∆τ) =
∆τ

2π

[
− EΘ(−E) +

cosE∆τ

π∆τ
+
|E|
π

(
Si|E|∆τ − π

2

)]
, (2.167)

where Si(z) is the sine integral function de�ned by

Si(z) =

∫ z

0

sin t

t
dt. (2.168)

Equation FII(E,∆τ) is then

FII(E,∆τ) =
1

2π2
(−γ + Ci|E|∆τ − ln|E|ε), (2.169)

where Ci(z) is the cosine integral function de�ned by

Ci(z) = γ + ln z +

∫ z

0

cos t− 1

t
dt. (2.170)
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Note that using equations 2.169 and 2.170 that FII(E,∆τ) has two divergences:

the �rst given by ln ∆τ as ∆τ → 0+; and the second by ln ε. The divergence that

occurs in ln ∆τ was already expected, but ln ε divergence does not make any sense

and needs to be removed through a renormalization procedure. Let us de�ne the

renormalized response function by Fren(E,∆τ) as follows

Fren(E,∆τ) = F (E,∆τ)− 1

(2π)2
ln ∆τ/ε. (2.171)

Therefore

Fren(E,∆τ) =
1

2π2

[
|E|∆τ

(
πΘ(−E) + Si|E|∆τ − π

2

)
+ cosE∆τ

+

∫ ∆τ

0

dζ
cos(Eζ)− 1

ζ

]
. (2.171)

In Eq. 2.171, Θ(−E) is the spontaneous emission contribution and the other

terms are emission and absorption terms induced by the vacuum �uctuations. But

the renormalized expression still misbehaves: for ∆τ < 1/|E|, it assumes a nonzero

value that vanishes quickly, and for |E|∆τ > 1, it assumes negative values that

are unmeaning for probabilities. This is due to the fact that we are dealing with a

�rst-order approximation, and consequently, they are valid just for "small" values

of ∆τ .

This problem can be superated de�ning the decay rate R(E,∆τ), when multi-

plied by the selectivity provides the probability of transition per unity of time:

R(E,∆τ) =
1

∆τ
Fren(E,∆τ) =

|E|
2π2

(
πΘ(−E) + Si|E|∆τ − π

2

)

+
1

2π2∆τ

(
cosE∆τ +

∫ ∆τ

0

dζ
cos(Eζ)− 1

ζ

)
. (2.171)
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Then, in the limit ∆τ →∞, the decay rate is given by

lim
∆τ→∞

R(E,∆τ) =
|E|
2π

Θ(−E). (2.172)

We can conclude that there is no spontaneous excitation after a long atom-

�eld interaction time and that the spontaneous decay rate approaches to a constant

proportional to the energy gap.

2.5 Spontaneous decay rate in the presence of mir-

rors

As already mentioned at the end of the section 2.3, the response function F

written in terms of the Wightman function can provide us with the change in the

probability of transition when we introduce boundary conditions into the system.

Here, we wish to present a successful model used by Ford et al to measuring the

change of the vacuum �uctuations, evaluated on the world line of the atom, due

to the presence of perfectly re�ecting mirrors. This same method, as discussed in

the �rst chapter, can later be extended to compute the transitions in the presence

of spherical surfaces, the core of this work, as seen in the next chapters. If we

introduce an in�nite perfectly re�ecting plate at z = 0 into the system and suppose

that the atom is at rest at a distance η/2 from the plate, the world line is given by

xµ(x) = (τ, 0, 0, η/2).

The supposition of perfect re�ection at the plate is similar to the supposition

that we have a perfect conductor plate in the case of electromagnetic �elds. Then,

if the initial state of the system at τ = τi is |e〉 ⊗ |0〉, to �rst order, for the system

to evolve to |g〉 ⊗ |Φf〉, where |Φf〉 is an arbitrary �nal �eld con�guration, in a

�nite time interval ∆τ = τf − τi, the probability of transition is proportional to the
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response function and given by the equation below, as demonstrated in section 2.3,

F (E, τf , τi) =

∫ τf

τi

dτ

∫ τf

ττi

dτ ′e−iE(τ−τ ′)G+(x(τ), x(τ ′)), (2.173)

which contains in positive Wightman function satisfying Dirichlet boundary condi-

tions on the mirror G+(x(τ), x(τ ′)) the physical e�ects introduced into the system

by the presence of mirrors, i.e., capturing the empty space contribution (or empty

Minkowski spacetime) as well as the correction due to the boundary.

2.5.1 Asymptotic decay rate near to one mirror

Let us introduce the variables ζ = τ − τ ′ and λ = τ + τ ′, then we have the

positive Wightman function given by

G+(x, x′) = − 1

4π2

1

(ζ − iε)2
+

1

4π2

1

(ζ − iε)2 − η2
, (2.174)

that by construction is null at the mirror and has two terms, one associated with the

two-level system, and the other with its image, as shown in Fig. 2.4. By substituting

Figure 2.4: Schematic view of the real charge (blue bullet) and its image (red bullet)
near to one mirror.
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Eq. 2.174 for Eq. 2.173, we obtain

F (E,∆τ, η) = FM(E,∆τ) + F∂Γ(E,∆τ, η), (2.175)

where

FM(E,∆τ) = − 1

4π2

∫ ∆τ

−∆τ

dζ
(∆τ − |ζ|)e−iEζ

(ζ − iε)2
(2.176)

is the empty-space contribution, and the

F∂Γ(E,∆τ, η) = − 1

4π2

∫ ∆τ

−∆τ

dζ
(∆τ − |ζ|)e−iEζ

(ζ − iε)2 − η2
(2.177)

is the correction due to the boundary conditions introduced into the system by the

mirror. Similar to the mathematical procedures already considered in the section 2.4,

here we introduce the in�nitesimal parameter ε to correct specify the singularities

of the Wightman function. In line with that we can de�ne an instantaneous rate as

R =
∂F (E,∆τ)

∂∆τ
, (2.178)

which provides the transition probability per unit proper time, normalized by the

selectivity of the atom, given by

R(E,∆τ, η) = RM(E,∆τ) +R∂Γ(E,∆τ, η), (2.179)

where

RM(E,∆τ) = − 1

4π2

∫ ∆τ

−∆τ

dζ
e−iEζ

(ζ − iε)2
(2.180)

and

R∂Γ(E,∆τ, η) =
1

4π2

∫ ∆τ

−∆τ

dζ
e−iEζ

(ζ − iε)2 − η2
. (2.181)
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The integrals given by equations 2.180 and 2.181 can be solved using the complex

variables method. Let us start with the �rst one, which provides the transition rate

in empty Minkowski spacetime, using the known residue theorem. To do that, let

us take the limit ε→ 0 and we have

∫ ∆τ

−∆τ

dζ
e−iEζ

(ζ − iε)2
= 2πEΘ(−E)− 2

∫ ∞
∆τ

dζ
cosEζ

ζ2
. (2.182)

We can obtain it after some algebraic manipulations, by substituting Eq. 2.182

in Eq. 2.180, the empty-space rate

RM(E,∆τ) =
1

2π

{
− EΘ(−E) +

cos(E∆τ)

π∆τ
+
|E|
π

(
− π

2
+ Si(|E|∆τ)

)}
(2.183)

where Si(z) is the sine integral function, and the equation 2.183 has the expected

behavior for |E|∆τ � 1: when E < 0 the spontaneous decay is given by −E/2π and

when E > 0 the spontaneous excitation is forbidden. For a small ∆τ regime, both

rates diverge as 1/∆τ . The short switching time that produces a great disturbance

in the system may be associated with the observed divergence. But in our work we

are more interested in the term given by Eq. 2.181. Then, in order to calculate

the correction in the rate due to the mirror (the R∂Γ), let us divide the integration

range into two intervals: [−∆τ, 0] and [0,∆τ ]. By changing the integration variable

in the �rst integral, we obtain

R∂Γ(E,∆τ, η) =
1

2π2
Re

∫ ∆τ

0

dζ
e−iEζ

(ζ − iε)2 − η2
=

1

2π
Re

∫ ∆τ

0

dζf(E, η, ζ, ε),(2.184)

where the function f is analytic, except at the points {η + iε,−η + iε}. The limit

ε → 0 can be taken directly for 0 ≤ ∆τ ≤ η. Into this interval, R∂Γ(E,∆τ, η) is

continuous on ∆τ and given by

R∂Γ(E,∆τ, η) =
1

2π2

∫ ∆τ

0

dζ
cosEζ

(ζ2 − η2)
. (2.185)
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We can observe for ∆τ < η interval, R∂Γ(E,∆, η) 6= 0. Apparently this is an acausal

e�ect, because the emitted photon does not have time to travel to the mirror and

be re�ected back to the atom. However, we can think this happens because the

presence of the mirror modi�es the quantized �eld to which the atom is coupled. It

is important to note the atom is not interacting directly with the plate as much as it

is interacting with the modi�ed vacuum �uctuations in the vicinity of the atom. In

this sense, it is better to consider the atom as coupled to these vacuum �uctuations

than to interacting directly with its image.

For ∆τ > η interval the contribution of the plate to spontaneous emission rate

can also be calculated as follows

R∂Γ(E,∆τ, η) =
1

2π
Θ(−E)

sin ηE

η
+

1

2π2

∫ ∞
∆τ

dζ
cosEζ

ζ2 − η2
. (2.186)

The total asymptotic decay rate of spontaneous radiation is thus obtained by

substituting Eqs. 2.183 and 2.186 for Eq. 2.179 as well as by taking the limit

τ →∞, which results in

lim
∆τ→∞

R(E,∆τ, η) =
−E
2π

Θ(−E)(1− sin ηE

ηE
). (2.187)

This asymptotic decay rate plotted as a function of Eη was extracted from [19]

and it is shown and discussed in the next subsection. This important theoretical

result reproduces qualitatively the experiments presented in literature very well, as

exposed in the next subsection.

2.5.2 Asymptotic decay rate in the presence of two mirrors

In this section, the main goal is to obtain Wightman's positive function of a two-

level monopol positioned between two perfectly re�ecting parallel plates, using the

same method described in previous section to check the in�uence of one plate on the

rate of spontaneous emission. The methodology is broadly discussed in Ref. [19,55].
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Let us consider the atom positioned between the two mirrors at z = 0 and z = l

(the exact atom's position at the x = y = 0, and z = η/2), as shown in Fig 2.5.

Using the method of images to calculate the positive Wightman function evaluated

Figure 2.5: Schematic view of the real charge (blue bullet) and its in�nite images
(red bullets) in the presence of two mirrors.

on the world line of the atom makes it possible to obtain

G+(x, x′) = − 1

4π2

∞∑
k=−∞

1

(ζ − iε)2 − (2kl)2
(2.188)

+
1

4π2

∞∑
k=−∞

1

(ζ − iε)2 − (η − 2kl)2
. (2.189)

Now, by substituting Eq. 2.189 for Eq. 2.173, and reproducing the same math-

ematical procedures of the previous sections, the spontaneous emission rate can be

calculated exactly, being given by

lim
∆τ→∞

R(E,∆τ, η, l) =
−EΘ(−E)

2π

∞∑
k=−∞

[
sin 2kEl

2kEl
− sinE(η − 2kl)

E(η − 2kl)

]
. (2.190)

This rate is a discontinuous function of El, which is due to the discreteness of the

wave number in the direction normal to the mirrors, as it is discussed in Fig. 2.6 b)

for the excited atomic system positioned at the center of cavity given by the mirrors.

If we take the average in Eq. 2.190 over 0 ≤ 1
2
η ≤ l interval, the consequent series
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can be exactly computed using the identity

∞∑
k=−∞

∫ a

0

f(x+ ka)dx =

∫ ∞
−∞

f(x)dx, (2.191)

which after a straightforward calculation, we can obtain

lim
∆τ→∞

〈R(E, l,∆τ)〉 =
|E|
2π

(
1 +

y

n+ y

)
, (2.192)

where El = π(n + y), n = 0, 1, 2, ..., 0 < y < 1, and 〈〉 means for an average over

atom's position. When El/π is an integer we can label it as a resonant cavity.

The mean rate has a discontinuous jump and reaches a value equal to the rate of

transition in the free space. In non-resonant cavities, the mean rate is inhibited and

consequently the mean lifetime of the excited state is enhanced (See Ref. [19]).

As stated in the introduction, the theoretical model addressed in this chapter

contains the essencial ingredients to understanding and investigating spontaneous

decay processes of the excited systems placed in vicinity of boundary surfaces.

In Fig. 2.6 some results for the asymptotic decay rate of spontaneous emission

obtained by Ford et al are presented.

In Fig. 2.6 a) shows the asymptotic rate for the excited atomic system in the

presence of a perfectly conducting plate as a function of Eη (See Eq. 2.187), where

the �eld vanishes at the mirror due to Dirichlet boundary conditions, and the rate

vanishes at η = 0. See there are regions where the rate of transition is suppressed,

and regions where it is enhanced, as usually presented in literature [41, 46, 47]. In

Fig. 2.6 b), the asymptotic rate of spontaneous emission is shown, this time for

the system trapped at the center of the cavity (between the two parallel plates),

as a function of the cavity size (See Eq. 2.190). In particular, when a two-level

system is trapped between parallel walls, the spontaneous decay process can be

substantially suppressed when the distance between the walls is much smaller than

the wavelength of the emitted radiation. On the other hand, the decay rate can
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Figure 2.6: a) The asymptotic rate of spontaneous emission in the presence of a
perfectly conducting plate as a function of the atom distance to the mirror. By
construction see that for Eη → 0 the spontaneous emission vanishes, and when
Eη → ∞ the free atom result is recovered. b) The asymptotic rate of spontaneous
emission in the presence of two parallel plates as a function of the cavity size (emitter
at the center). In both cases E is the absolute value of the transition energy. Figure
taken from Ref. [19].
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be strongly enhanced due to the emergence of resonant modes [19]. Enhanced and

suppressed regions in the emission process shown in Fig. 2.6 b) are in agreement

with typical experimental results presented in literature [16].

The model will be extended to the case in which the atomic system is near a

spherical surface as well as when the system is trapped in spherical shell cavities,

the core of this research and subject of the next two chapters.



3
Spontaneous decay rate in the vicinity of a

re�ecting sphere

To start with, let us recall the main result concerning the process of sponta-

neous emission by an excited two-level system interacting with the scalar �eld in

the vaccum state, for the particular case in which the atom is at rest in the empty

Minkowski space and Wigthman function is given by

G+
M(x(τ), x(τ ′)) = − 1

4π2

1

(ζ − iε)2
, (3.1)

where ζ = τ − τ ′ and the spontaneous emission process is usually characterized by

the asymptotic decay rate de�ned as R = ∂F (E,∆τ)
∂∆τ

|∆τ→∞, with ∆τ = τf − τi, as

discussed in the sections 2.4 and 2.5. In the case of an atom at rest in the empty

space, it is shown that the rate in which it is given is by Eq. 2.180, where the

integral is taken in the limit ε → 0 provide RM(E) = E
2π
. This expression shows

that spontaneous decay rate in the empty space is proportional to the frequency of

the emitted radiation.

The problem of a two-level monopole coupled to a scalar massless �eld in the

vicinity of re�ecting plates has been previously addressed [19], having shown that

the decay rate is substantially suppressed when the atom is placed close to the walls
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due to the imposed Dirichlet boundary conditions as well as the decay rate can be

fully suppressed when the atom is placed between parallel walls when the distance

between them is smaller than half of the radiation wavelength. Enhancement of the

decay rate, as compared to the corresponding rate in the free space, has also been

achieved when new �eld modes are supported by the cavity. The decay rate presents

periodic modulations as a function of the cavity dimension or the atom's distance

to the plates (see Ref. [19]). All these features are in agreement with experiments as

well as with theoretical models of dipole atoms coupled with the vector quantized

electromagnetic �eld [35,66�68].

These �ndings support the conjecture that the simpli�ed description based on a

monopole two-level system coupled to a scalar �eld can indeed capture the essential

mechanism behind the process of spontaneous emission near surface boundaries. We

extend these theoretical approximations to the case of an atom placed in the vicinity

of a perfectly re�ecting spherical surface, as shown in Fig. 3.1. Let us start by placing

Figure 3.1: Schematic view of the two-level system (dark blue bullet) and its respec-
tive image (clear red bullet) in the vicinity of a perfectly re�ecting sphere of radius
a. The two-level system is placed at a distance ρ from the center of the sphere. a)
Exterior problem; b) Interior problem.
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the atom in the exterior region of a sphere of radius a. The Wigthman function can

be obtained using the method of images. The atom induces the emergence of an

image monopole in the interior region. The image's position and monopole charge

are such that the �eld vanishes in the surface of the sphere, as imposed by the

Dirichlet boundary conditions. Wightman's function can be written as

G+(x(τ), x′(τ ′)) = − 1

4π2

1

(ζ − iε)2 + |x− x′|2
(3.2)

+
1

4π2

1

(ζ − iε)2 + |x− x′i|2/qi
, (3.3)

where x is an arbitrary position in the exterior region, x′ is the atom's position, x′i

is the image's position and qi is the modulus of the image's e�ective charge (its sign

is opposite to the atom's monopole). When the atom is placed at a distance ρ from

the center of the sphere x′ = (ρ, 0, 0), G+ vanishes in all points x at the surface of

the sphere, for any value of ζ, provided that x′i = (a2/ρ, 0, 0) and qi = (a/ρ)2. In

order to compute the spontaneous decay rate, Wightman's function on the world

line of the atom at rest (x = x′) is needed. In this case, it assumes the simpler form

G+(x(τ), x(τ ′)) = − 1

4π2

1

(ζ − iε)2

+
1

4π2

1

(ζ − iε)2 + |ρ− a2/ρ|2/(a/ρ)2
. (3.3)

Notice that it reduces to Wightman's function in the empty space for a → 0 and

for ρ → ∞, as expected. It vanishes at ρ = a according to the imposed Dirichlet

boundary condition.

The asymptotic decay rate can be directly calculated by replacing Wightman's

function in Eq. 2.158, because the above function incorporates both contributions

of the monopole and its image. The algebraic procedure is similar to the one used

to compute the decay rate near in�nite plates [19]. As a result the asymptotic decay
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rate assumes the form

R(E, ρ, a) =
E

2π

(
1− sin[(ρ2/a− a)E]

(ρ2/a− a)E

)
. (3.4)

Notice that when the distance of the atom to the sphere ρ is much larger than the

radius a, the decay rate becomes the same as the one in the free space. The same

limit is also achieved when the wavelength of the emitted radiation λ ∝ 1/E is much

smaller then the distance of the atom to the sphere.

The case of the atom placed in the interior region of the sphere can also be solved

using the method of images. The resulting expression for Wightman's function on

the world line of the atom and the subsequent spontaneous decay rate are exactly

the same ones obtained for the exterior problem with the restriction of 0 < ρ/a < 1.

It is interesting to stress that when the atom is placed at the center of the sphere,

the decay rate becomes identical to that of a two-level system placed at a distance

a/2 of a perfectly re�ecting in�nite plate [19].

There are three distinct length scales that in�uence the decay rate of the present

two-level model system near a spherical surface, namely, the radius a of the sphere,

the distance ρ of the atom to the center of the sphere, and the wavelength λ ∝ 1/E

of the emitted radiation. As it happens, we provide a detailed analysis of the

dependence of the spontaneous decay rate on these length scales for both exterior

and interior problems.

In Fig. 3.2 we plot the relative decay rate (the spontaneous decay rate in the

vicinity of the sphere R(Ea, a/ρ) in units of the decay rate in the free space R(E) =

E/2π) as a function of the inverse of the distance ρ of the two-level system to

the center of the sphere normalized by the sphere's radius. Two representative

values of Ea are shown. The spontaneous decay vanishes at the surface of the

sphere by construction, as imposed by the Dirichlet boundary condition. As ρ

increases (decreasing values of a/ρ), the decay rate converges to its free space value

presenting oscillations with decaying amplitudes. At its maximum overshooting, the
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Figure 3.2: Relative decay rate 2πR/E as a function of a/ρ (exterior problem)
for two representative values of Ea. It vanishes at the surface of the sphere by
construction, converging to the free space value at large distances. In the regime of
small energies, the distance of maximum overshooting scales as E−1/2

spontaneous decay rate becomes approximately 21% larger than the one in the free

space. This maximum relative decay rate is achieved at larger distances of the atom

to the surface when the wavelength of the emitted radiation becomes larger (smaller

energy), with the atom's position of maximum overshooting scaling as E−1/2.

To illustrate more clearly the dependence of the decay rate on the energy of the

emitted radiation, we plot in Fig. 3.3 the relative decay rate as a function of Ea

for two �xed distances of the atom to the sphere's center. The decay rate converges

to the free space value for very large energies, irrespective of the atom's distance to

the sphere. In this regime, the wavelength of the emitted radiation becomes much

smaller than the other length scales. The relative decay rate vanishes in the opposite
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Figure 3.3: Relative decay rate (measured in units of the free space decay rate) as a
function of Ea for two representative values of a/ρ (exterior problem). The crossover
from the small to the high energy regime occurs through damped oscillations with
the maximum overshooting energy scaling as 1/ρ2 at large distances.

regime of Ea→ 0. The crossover from the low to the high energy regime also occurs

via damped oscillations, with the energy corresponding to the maximum relative

decay rate scaling as 1/ρ2 when ρ/a� 1.

Let us now discuss the spontaneous decay process for the case of a two-level

system trapped in the interior of the sphere. We start by plotting the relative decay

rate as a function of Ea for distinct positions of the atom (see Fig. 3.4). When

the atom is placed at the center of the sphere, we have already commented that the

decay rate becomes exactly the same as that for a two-level monopole placed at a

distance a/2 of an in�nite re�ecting plate [19]. When the atom is displaced towards

the sphere surface, the wavelength of the decay rate oscillations increases, with the
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Figure 3.4: Relative decay rate as a function of Ea for three representative values
of ρ/a (interior problem). The maximum overshooting scales as the inverse of the
atom's distance to the surface d = ρ− a when ρ/a→ 1.

energy of the �rst peak scaling with the distance of the atom to the surface d = a−ρ

proportionally to 1/d in the limit of d→ 0.

A series of interesting features can be extracted from the dependence of the

decay rate on the atom's position for the interior problem (see Fig. 3.5). We depict

typical curves by considering some relevant energy values. For Ea < π the decay

rate is always smaller than that in the free space, irrespective of the atom's position.

For smaller energies, the relative decay rate if further suppressed. The maximum

overshooting of the relative decay rate at the sphere's center occurs at Ea ' 4.49.

For this energy, the relative decay rate decays monotonically to zero as the atom is

displaced towards the sphere's surface. For larger energies, the relative decay rate
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Figure 3.5: Relative decay rate 2πR/E as a function of ρ/a (interior problem) for
some representative values of Ea. For Ea < π the decay rate is smaller than the one
in the free space, irrespective to the atom's position. The maximum overshooting
occurs at the sphere's center for Ea ' 4.49. Oscillations are developed for larger
energies.

develops damped oscillations.

We �nish our analysis by reporting the decay rate averaged over the sphere's

volume. The average decay rate is given by

R =
1

4πa3/3

∫ a

0

4πρ2dρR(Ea, ρ/a). (3.5)

This quantity accounts for the average decay rate of randomly quenched emitters

uniformly distributed inside the sphere. The volume averaged spontaneous decay

rate normalized by the free space decay is shown in Fig. 3.6 as a function of Ea. It
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vanishes quadratically as Ea→ 0. Therefore, the average decay rate is substantially

suppressed when the wavelength λ of the emitted radiation becomes larger than the

size of the sphere. In the opposite regime of a >> λ, the average decay rate slowly

converges to the free space value. The crossover between these two regimes takes

place at a/λ ∼ 1.
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Figure 3.6: Relative decay rate averaged over the sphere's volume (interior problem)
as a function of Ea. It vanishes as (Ea)2, converging monotonically to the free space
value as Ea→∞.

The results of this chapter were published in 2017 [69]. In the next chapter we

are concerned with the decay rate of the system trapped in spherical shell cavities.



4
Spontaneous decay rate in spherical shell

cavities

Using the same theoretical model applied so far, we investigate the in�uence of

two concentric spherical surfaces on the spontaneous decay process of an excited

system trapped between the radii, as ilustraded in Fig. 4.1.

It is important to emphasize that G+(x(τ), x(τ ′)), as the cases previously stud-

ied, is completely dependent on the geometry of the problem, and is also used here

to obtain the transition probability. At the surface of the concentric spheres Wight-

man's function satis�es Dirichlet boundary conditions and is null by construction.

It has been previously demonstrated that, when the atom is positioned near in�-

nite plates satisfying Dirichlet boundary conditions, the decay rate is substantially

suppressed. For the case treated here, Wightman's function can also be obtained

through the method of images, where the atom induces in�nite images inside and

outside the shell (see Fig. 4.1). Therefore, the function incorporates contributions
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Figure 4.1: Schematic view of the two-level system (bullet at ρ) and four represen-
tative images at x

′
4i, x

′
4i−1, x

′
4i−2, x

′
4i−3.

from an in�nite set of variable image charges and can be written as

G+(x(τ), x′(τ ′)) =
1

4π2

{
−1

(ζ − iε)2 − |x− x′|2
(4.1)

+ lim
N→∞

N∑
i=1

[
q4i−3

(ζ − iε)2 − |x− x′4i−3|2

+
q4i−2

(ζ − iε)2 − |x− x′4i−2|2

− q4i−1

(ζ − iε)2 − |x− x′4i−1|2

− q4i

(ζ − iε)2 − |x− x′4i|2

]}
,

where ζ = τ − τ ′, x is an arbitrary position, x′ is the atom's position; x
′
4i−3, x

′
4i−2,

x
′
4i−1 and x

′
4i denotes any of the possible positions of the successive image charges,
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obtained from repeated applications of the method of images, i. e.,

x
′

1 =
b2

ρ
, x

′

5 =
b2

ρ

b2

a2
, ... , x

′

4i−3 =
b2

ρ

(
b2

a2

)i−1

x
′

2 =
a2

ρ
, x

′

6 =
a2

ρ

a2

b2
, ... , x

′

4i−2 =
a2

ρ

(
a2

b2

)i−1

x
′

3 =
b2ρ

a2
, x

′

7 =
b2ρ

a2

b2

a2
, ... , x

′

4i−1 =
b2ρ

a2

(
b2

a2

)i−1

x
′

4 =
a2ρ

b2
, x

′

8 =
a2ρ

b2

a2

b2
, ... , x

′

4i =
a2ρ

b2

(
a2

b2

)i−1

,

with ρ being some position of the two-level monopole between the radii of the inner

and outer spheres (a ≤ ρ ≤ b) and a and b are their radii, respectively. In Eq. 4.1,

q
′
4i−3, q

′
4i−2, q

′
4i−1 and q

′
4i represents all the possible moduli of the image's e�ective

charges calculated using the method of images and given by

q4i−3 =

[
b

ρ

(
b

a

)i−1]2

q4i−2 =

[
a

ρ

(
a

b

)i−1]2

q4i−1 =

[
b

a

(
b

a

)i−1]2

q4i =

[
a

b

(
a

b

)i−1]2

,

representing any of the in�nite image charges. It was possible to write the four

representative image charges of any of the in�nite images through the successive

application of the method of images to obtain the �rst 12 image charges of the

in�nite set that appears in the Eq. 4.1. This allowed us to generalize and infer �the
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face� of all others, as can be seen below:

q1 =

(
b

ρ

)2

, q5 =

(
b

ρ

(
b

a

))2

, q9 =

(
b

ρ

(
b

a

)2)2

...

q2 =

(
a

ρ

)2

, q6 =

(
a

ρ

(
a

b

))2

, q10 =

(
a

ρ

(
a

b

)2)2

...

q3 =

(
b

a

)2

, q7 =

(
b

a

(
b

a

))2

, q11 =

(
b

a

(
b

a

)2)2

...

q4 =

(
a

b

)2

, q8 =

(
a

b

(
a

b

))2

, q12 =

(
a

b

(
a

b

)2)2

...

where each line of the equation was generalized to obtain the set mentioned above.

Notice that in Eq. 4.1, the set of terms containing q4i−3 and q4i−2 denotes contri-

butions of image charges whose signals are opposite to the source charge, while the

set of terms q4i−1 and q4i represents image contributions with the same signal of

the source charge. In Fig. 4.2 we plot the magnitude of the image charges as a

function of their respective positions, both in the internal and external regions of

the spherical shell.

Note that in order to obtain Wightman's function given by Eq. 4.1, we consider

all the terms of the series that incorporate the contributions of the atom trapped

between the concentric spheres shown in Fig. 4.1 as well as its in�nite images. As

we illustrate in Fig. 4.3, Wightman's function given by Eq. 4.1 satis�es the Dirichlet

boundary conditions and diverges over the source. For more details on the treatment

of Green's function for concentric spheres see Ref. [70].

The asymptotic decay rate associated with spontaneous emission processes is

usually de�ned as R =
∂F (E,τf )

∂τf
, after renormalizing logarithmic singularities in the

transition probability [55]. Following the prescription developed in [19, 55, 69], the
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Figure 4.2: Magnitude of the image charges as a function of their respective positions
in both internal and external regions of a spherical shell of radii a = 0.5 and b = 1.
Filled (open) circles represent image charges with the same (opposite) sign of the
source charge (star symbol).

asymptotic decay rate can be written as

R(E, ρ, a, b) =
E

2π

[
1 +

∑
i

sinc(Eη4i−3) + sinc(Eη4i−2)− sinc(Eη4i−1)

−sinc(Eη4i)

]
.

where ηj =
ρ−x′j√
qj
. The averaged decay rate over the volume of the spherical shell is

given by

R =
3

b3 − a3

∫ b

a

ρ2dρR(E, ρ, a, b).
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Figure 4.3: Density plot of the Wightman function given by Eq. 4.1 with ζ = 0 for
two representative values of radii (a) a = 10 and b = 20; (b) a = 10 and b = 100.
The represented plane crosses the source charge and the center of the spheres.The
Wightman function is null at the surfaces, satisfying the Dirichlet boundary condi-
tions and diverges over the source charge.

This quantity accounts for the average decay rate of randomly quenched emitters

uniformly distributed between the two concentric spheres.

It is important to consider three factors for the analysis, and understand the

decay rate behavior of the two-level detector positioned between two concentric

spheres of radii a and b (always the atomic system at position ρ so that a ≤ ρ ≤ b):
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i) The relation between the radii of spheres; ii) The distance ρ from the detector

to the center of the concentric spheres; iii) The wavelength λ ∝ 1/E of the emitted

radiation. In this section, we provide a detailed analysis of the spontaneous decay

rate dependence considering those factors.

In Fig. 4.4, we plot the relative decay rate (the spontaneous decay rate for the

atomic system trapped in the concentric spheres in units of the decay rate in the

free space R(Eρ, ρ) = E/2π) as a function of the parameter Eρ associated with the

energy of the two-level monopole. We �xed the atom's positions as ρ = (a+ b)/2.

We consider in Fig. 4.4 four di�erent shell's geometries: (a) two cases a << 1

with b �nite and a = b/2. In the latter case the spacement between the spherical

surfaces belong to the same order of their radii; (b) a/b→ 1 or equivalently a→ b for

which both surfaces radii are larger than the spacement between them; (c) a = 1 and

much smaller than b. For the cases described in (a), the solid line (blue) represents

the relative decay rate when the a << 1. In this case, the relative decay rate has

a considerable peak in the low energy range (high wavelength of emitted radiation)

and converges slowly to the free space in the high energy limit, as occurred when

the two-level system was placed inside a single perfectly re�ecting sphere [69]. Still

in (a), the dashed line (red) represents the two-level monopole trapped between

two concentric spheres with a = b/2. It is interesting to stress that, in this case,

we observe a low energies range for which the decay rate oscillates around zero as

well as irregular peaks in the decay rate. See that it is possible to suppress the

spontaneous emission in the aforementioned low energy regime. The negative values

in the decay rate have been previously attributed to the large interaction time and

associated with the limit of validity of the perturbation theory or to non-Markovian

re-absorption processes [55,71�74].

As seen in (b) (Fig. 4.4), when the spheres have similar radii (a/b → 1 or

equivalent a → b), the relative decay rate has a low-energy range for which the

decay is suppressed, having an enhancement in the relative rate thereafter. These

results converge to the ones obtained for the two-level monopole placed between
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two parallel re�ecting plates [19], as expected because the physical situation in the

referential of the atomic system is very similar, i. e., the radii of the spheres are

much larger than the distance of the two-level monopole to their surfaces.

Notice that in the case shown in (c), there is an improvement of the relative

decay rate in the low energy regime, with the relative spontaneous decay oscillating

and converging smoothly to the free space in the high energy regime. For this case,

the results are equivalent to those obtained for the two-level monopole placed in the

exterior region of a perfectly re�ecting spherical surface (see Ref. [69]). In addition,

the aspect of the relative decay rate is identical to that shown in the solid line (blue)

in (a) [69].

We also investigated the dependence of the spontaneous decay rate on the posi-

tion of the detector within the spherical shell. Typical dependences on the detector's

position are reported in Fig.4.5 for the case of a spherical shell with inner radius

a = 0.5 and outer radius b = 1. The decay rate is quite suppressed for low en-

ergies (large wavelengths of the emitted radiation). As the quantum of emitted

radiation energy increases, the decay rate of a detector placed at the center of the

shell approaches the one expected for a detector placed in the free vaccum because

the wavelength of the emitted radiation becomes much smaller than the distance to

both shell's surfaces. Oscillations in the decay rate are developed when the atom

approaches the vicinity of the boundaring surfaces, ultimately vanishing when the

radiation's wavelength becomes much larger than the atom-surface distance.

In Fig. 4.6, we plot the average decay rate calculated over the volume of the

spherical shell as a function of the parameter Eρ associated with the energy of the

two-level monopole. Here we also considered a �xed value position (ρ = (a + b)/2)

from the center of the spheres for the same shell's geometries commented above.

In (a) (Fig. 4.6), the solid line (blue) represents the average relative decay rate

when the a << 1 and the decay rate vanishes as (Eρ)2, converging monotonically

to the free space value as Eρ → ∞, as expected for the case of the atomic system

inside a single sphere [69]. Still in (a), the dashed line (red) represents the two-level
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monopole trapped between the two concentric spheres for a = b/2. In this case,

we observe a low energy range in which the average relative decay rate oscillates

around zero as well as the development of irregular peaks. In (b), when a > 1 and

much smaller then b, the average relative decay rate (solid line in blue) converges

to those obtained for the exterior problem of a two-level system placed outside a

single sphere [69]. In this case, the average relative decay rate converges to the

free atomic system in the limit of high energies having an aspect similar to the rate

of the two-level system inside a single sphere (interior problem). Still in (b), the

dashed line in red represents the case where the radii of the spheres a/b → 1 (or

equivalently a→ b). The average relative decay rate converges the one for the two-

level system positioned between parallel plates, i.e., there is a low energies regime

for which the rate is completely suppressed with regular oscillations associated with

the emergence of new �eld modes (see more details in Ref. [19]). Furthermore, for

any of the analyzed cases in Fig. 4.6, the average relative decay rate is substantially

suppressed when the wavelength λ of the emitted radiation becomes larger than the

size of the spherical shell cavity. In the opposite regime, the average decay rate

converges slowly to the free space value.

The results of this chapter were published in 2019 [75].
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Figure 4.4: Relative decay rate (measured in units of the free space decay rate) as
a function of Eρ for di�erent relations between the radii of the spheres. In (a), we
have a << 1 and a = b/2. For the �rst case (a << 1 ), represented by the solid line
(blue), the results converge to those obtained for the case of the two-level monopole
placed inside a perfectly re�ecting sphere. For a = b/2 (dashed red line), exist a low
energy range for which the decay rate oscillates around zero. In (b), for a/b → 1,
the relative decay rate converges to that obtained in the case of parallel plates. In
(c), we recover the case of an atomic system positioned in the exterior of a single
sphere.
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spherical shell with radii a = 0.5 and b = 1. Distinct cases of emitted radiation
energies are illustrated. Spontaneous decay is strongly suppressed for low energies.
At high energies, it vanishes near the surfaces and exhibits an oscillatory convergence
to the rate at the free vacuum when the detector is moved far from the surfaces.
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Still in (a), the average relative decay rate for a = b/2 (dashed line in red) oscillates
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Summary and Conclusions

In short, we have used a simple theoretical model to investigate the in�uence

of a spherical surface on the spontaneous decay rate process of an excited system.

Within a �rst-order perturbation theory, we provided an analytical expression for the

spontaneous decay rate of a two-level monopole coupled to an Hermitian massless

scalar �eld. We demonstrated that both cases of the two-level system placed in the

exterior and in the interior of the sphere with a perfectly re�ecting surface can be

similarly described.

We provided a detailed analysis of the dependence of the spontaneous decay

rate on the energy of the emitted radiation (or equivalently on its wavelength), the

sphere's radius and the emitter's position. In particular, we showed that the spon-

taneous decay rate measured in units of the free space decay rate depicts damped

oscillations as a function of either the radiation energy or the emitter's position

with simple asymptotic scaling laws. Besides, we found that the decay rate in the

interior of the sphere is always suppressed in relation to the free space decay in the

low energy regime, irrespective of the emitter's position. At higher energies it also

develops damped oscillations. The volume averaged relative decay rate showed two

distinct regimes: a quadratic vanishing for small energies and a slow convergence to

the free space behavior at high energies.

We use the same method to investigate the in�uence of two concentric perfectly
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re�ecting spheres on the spontaneous decay rate of a trapped excited system. We

showed that the results already obtained in the literature for the two-level system

between parallel plates and in the vicinity of a single sphere can be recovered as

asymptotic cases of the problem treated here. Furthermore, for the two concentric

spheres, we provide the same detailed analysis of the dependence of the spontaneous

decay rate on the energy of the emitted radiation (or equivalently on its wavelength)

as well as on the di�erent relation between the radii of the concentric spheres. We

observed a low energy range for which the decay rate oscillates around zero as well as

irregular peaks in the decay rate. We have veri�ed that it is possible to suppress the

spontaneous emission in the mentioned low energy range. In the opposite regime, the

decay rate converges slowly to the free space value. The same characteristics were

observed for the average relative decay rate. It is important to stress that the decay

rate develops irregular oscillations as a function of the quantum of energy radiated

within the spherical shell, in contrast with the regular oscillations observed for the

similar process occurring in a cavity composed by parallel plates. These irregular

oscillations re�ect the non-uniform spacement and variability of the in�nite set of

image charges.

It is interesting to stress that the present approach provides a clear picture of

the in�uence of curved bounding surfaces in the spontaneous emission processes,

caused by the modi�cation of the vacuum �eld modes in the vicinity of the spherical

surfaces. The detailed understanding of these important e�ects �nds great rele-

vance in the control and adjustment of spontaneous emission processes, which can

be fundamental in the de�nition of the performance of optoelectronic devices that

are usually based on photosensible particles trapped in spherical coats [49]. The

present approach can be extended to account for polarization e�ects due to the

coupling between the electrical dipole of the emitter, and the electromagnetic �eld

in the vacuum state [40, 76]. We hope that the present work can stimulate further

contributions aiming to uncover the in�uence of other shell geometries in the decay

process of trapped emitters.
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a b s t r a c t

Within a first-order time-dependent perturbation approach, we
compute the spontaneous decay rate of a two-level system placed
in the vicinity of a perfectly reflecting spherical surface. We con-
sider a model system on which the emitter is represented by a
two-level monopole coupled to a Hermitian massless scalar field.
Using themethod of images, we determine the appropriate Green’s
function evaluated in the world line of the atom. The change in the
spontaneous decay rate results from the interaction of the atom
with its image. We provide a detailed analysis of the dependence
of the decay rate on the sphere’s radius, the atom’s location, and
the emitted radiation frequency. Both exterior and interior prob-
lems are discussed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Tuning the rate of spontaneous emission of radiation by excited single atoms, molecules and quan-
tum dots has been considered as a fundamental step towards the development of a new class of quan-
tum optical devices. These include nanospectrometers and nanolasers, as well as electroluminescent
and photonic band-gap structures [1–5].

Since the seminal work of Purcell [6], it has been known that the environment has a profound
influence on the decay rate of excited systems. In particular, when the excited system is close to
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interfaces, the imposed boundary conditions modify the density of possible electromagnetic modes.
As result, the decay rate changes due to the system’s coupling with the modified vacuum quantum
fluctuations.

Over the last decades, several works have explored the possibility of enhancement or suppression
of the decay rate of emitters placed near conducting walls, wedges, spheres and cylinders, or trapped
in microcavities such as parallel walls, spheres and ellipsoids [7–32]. In particular, when a two-
level system is trapped between parallel walls, the spontaneous decay process can be substantially
suppressed when the distance between the walls is much smaller than the wavelength of the emitted
radiation. On the other hand, the decay rate can be strongly enhanced due to the emergence of
resonant modes. Recently, the spontaneous decay rate of quantum entangled atoms near interfaces
has been a subject of increasing interest due to the possibility of generating and controlling quantum
entangled radiation fields [33–36].

In the present work, we study the spontaneous decay rate of a two-level system close to a
spherewith a perfectly reflecting surface, within a first-order time-dependent perturbation approach.
Experiments performedwith spherical SiO2 colloids with two different diameters doped with Erbium
at different concentrations showed a large difference in the spontaneous emission rate for both
colloid sizes [18]. However, two factors that influence the spontaneous decay process are usually
superposed: the modification of the field quantum fluctuations and polarization effects [20,26,28]. In
order to focus on the specific contribution of themodified field fluctuations, wewill consider a simple
model on which the atom is represented by a two-level monopole coupled to a massless scalar field.
Although not including polarization features, such model captures the essential ingredients needed
to understand the influence of the field’s mode changes induced by the presence of bounding surfaces
on the atom’s spontaneous emission. This approach has been successfully used in the literature
to describe the process of photodetection [37–40], the influence of parallel mirrors and strings on
the radiation process [15,41] and, more recently, on the entanglement generation by accelerated
atoms [34,42–46].

This work is organized as follows. In the next section, we will present the main lines related to the
first-order perturbation theory for the spontaneous decay rate of an excited monopole coupled to a
scalar massless field. We also compute the decay rate for the case on which the two-level system is
placed in the vicinity of a sphere with a perfectly reflecting surface. In Section 4, we provide a detailed
analysis of the dependence of the decay rate on the atom’s position, the radius of the sphere, as well
as on the frequency of the emitted radiation. In Section 5, we summarize our main findings and draw
some perspectives. Throughout this work, we will use units of h̄ = c = 1.

2. The spontaneous emission process

2.1. First-order perturbation theory

We start by briefly reviewing the main lines of the standard theoretical description of the
radioactive processes of atoms. The system’s Hilbert space is taken as the direct product of the
Hilbert space of the atom and the quantized field. The total Hamiltonian can be generally written
as H = HA + HF + Hint , where HA is the noninteracting atom’s Hamiltonian, HF is the Hamiltonian of
the free field and Hint represents the coupling between the atom and the background field. In order
to investigate the spontaneous decay process, we consider the initial state of the system to be in the
form |τi⟩ = |e⟩ ⊗ |φi⟩, where |e⟩ is the excited state of the atom and |φi⟩ is the initial vacuum state of
the field. In the interaction picture, the time evolution of the combined atom–field state is governed
by the evolution operator

U(τf , τi) = 1 − i
 τf

τi

Hint(τ
′)U(τ ′, τi)dτ ′. (1)

From the above equation, the state of the system at time τf can be formally written as |τf ⟩ =

U(τf , τi)|τi⟩. In the regime of weak atom–field coupling, the interaction Hamiltonian can be taken as
a small perturbation. Up to first-order in the perturbation expansion, the evolution operator assumes
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the simpler form

U(τf , τi) = 1 − i
 τf

τi

Hint(τ )dτ . (2)

The probability amplitude for the transition from the initial state at τi into the final state |g⟩ ⊗ |φf ⟩ is
given by

⟨gφf |U(τf , τi)|eφi⟩ = −i
 τf

τi

⟨gφf |Hint(τ )|eφi⟩dτ , (3)

where |φf ⟩ is an arbitrary state of the field and |g⟩ is the atom’s ground state.

2.2. A two-level monopole coupled to a scalar massless field

Here, we will consider the simplest model for the coupling between the atom and the field
that captures the essential features associated with the spontaneous emission process. The atom is
represented by a two-level monopole system which is coupled to a Hermitian massless scalar field.
The interaction Hamiltonian at time τ can be written as

Hint(τ ) = c1m(τ )φ(x(τ )), (4)

where c1 is a small coupling constant, m(τ ) is the monopole operator of the atom, and φ(x) is the
scalar field operator at the atom’s position. Thismodel has been previously used to describe a detector
of scalar fields [37,38,40], as well as to study the spontaneous decay of quantum entangled atoms
[42–46,34]. Within this approach, the transition probability from the atom’s excited state at τi = 0
into the ground state at τf is given by

P(E, τf ) = c21 |⟨e|m(0)|g⟩|2F(E, τf ), (5)

where the term c21 |⟨e|m(0)|g⟩|2 is known as the atom’s selectivity and F(E, τf ) is the field’s response
function

F(E, τf ) =

 τf

0
dτ

 τf

0
dτ ′eiE(τ−τ ′)G+(x(τ ), x(τ ′)). (6)

Here E = Ee − Eg > 0 represents the frequency ω = E in units of h̄ = 1 of the emitted radiation.
G+(x(τ ), x(τ ′)) = ⟨0|φ(x(τ ))φ(x(τ ′))|0⟩ is the positive scalar fieldWightman function in the vacuum
field state |0⟩.

3. Spontaneous decay rate in the vicinity of a reflecting sphere

Let us start by reviewing the main result concerning the process of spontaneous emission by an
excited two-level system interacting with the vacuum of a scalar quantum field in the free space. In
the particular case onwhich the atom is at rest in the emptyMinkowski space, theWightman function
is given by

G+

M(x(τ ), x(τ ′)) = −
1

4π2

1
(ζ − iϵ)2

, (7)

where ζ = τ −τ ′. The spontaneous emission process is usually characterized by the asymptotic decay
rate defined as R =

∂F(E,1τ)

∂1τ
|1τ→∞, with 1τ = τf − τi. It is straightforward to show that, in the case

of an atom at rest in the empty space, it can be put in the form

RM(E) = −
1

4π2


+∞

−∞

dζ
eiEζ

(ζ − iϵ)2
. (8)
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Fig. 1. Schematic view of the two-level system (dark blue bullet) and its respective image (clear red bullet) in the vicinity of a
perfectly reflecting sphere of radius a. The two-level system is placed at a distance ρ from the center of the sphere. (a) Exterior
problem; (b) Interior problem. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

The above integral can be performed by exploring the residue theorem and taking the limit ϵ → 0
to give RM(E) =

E
2π . Therefore, the spontaneous decay rate in the empty space is proportional to the

frequency of the emitted radiation.
In the presence of perfectly reflecting surfaces, the Wightman function has to satisfy appropriate

boundary conditions at the surfaces. The problemof a two-levelmonopole coupled to a scalarmassless
field in the vicinity of reflecting plates has been previously addressed [15]. It has been shown that the
decay rate is substantially suppressed when the atom is placed close to the walls due to the imposed
Dirichlet boundary conditions. Further, it has been explicitly demonstrated that the decay rate can be
fully suppressed when the atom is placed between parallel walls when the distance between them
is smaller than half of the radiation wavelength. Enhancement of the decay rate, as compared to the
corresponding rate in the free space, has also been achieved when new field modes are supported
by the cavity. The decay rate presents periodic modulations as a function of the cavity dimension
or the atom’s distance to the plates. All these features are in agreement with experiments, as well
as with theoretical models of dipole atoms coupled with the vector quantized electromagnetic field
[47–49,31]. These findings support the conjecture that the simplified description based in amonopole
two-level system coupled to a scalar field can indeed capture the essential mechanism behind the
process of spontaneous emission near surface boundaries.

Motivated by experiments showing a pronounced change in the decay rate of atoms trapped in
spherical cavities [18], wewill extend the above approach to the case of an atom placed in the vicinity
of a perfectly reflecting spherical surface (see Fig. 1). Let us start placing the atom in the exterior
region of a sphere of radius a. The Wightman function can be obtained using the method of images.
The atom induces the emergence of an image monopole in the interior region. The image’s position
and monopole charge are such that the field vanishes in the surface of the sphere, as imposed by the
Dirichlet boundary conditions. The Wightman function can then be written as

G+(x(τ ), x′(τ ′)) = −
1

4π2

1
(ζ − iϵ)2 + |x − x′|2

+
1

4π2

1
(ζ − iϵ)2 + |x − x′

i|
2/qi

, (9)

where x is an arbitrary position in the exterior region, x′ is the atom’s position, x′

i is the image’s position
and qi is the modulus of the image’s effective charge (its sign is opposite to the atom’s monopole).
When the atom is placed at a distance ρ from the center of the sphere x′

= (ρ, 0, 0),G+ vanishes
in all points x at the surface of the sphere, for any value of ζ , provided that x′

i = (a2/ρ, 0, 0) and
qi = (a/ρ)2. In order to compute the spontaneous decay rate, the Wightman function at the world
line of the atom at rest (x = x′) is needed. In this case, it assumes the simpler form

G+(x(τ ), x(τ ′)) = −
1

4π2

1
(ζ − iϵ)2

+
1

4π2

1
(ζ − iϵ)2 + |ρ − a2/ρ|2/(a/ρ)2

. (10)

Notice that it reduces to the Wightman function in the empty space for a → 0 and for ρ → ∞, as
expected. It vanishes at ρ = a according to the imposed Dirichlet boundary condition.
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Fig. 2. Relative decay rate 2πR/E as a function of a/ρ (exterior problem) for two representative values of Ea. It vanishes at the
surface of the sphere by construction, converging to the free space value at large distances. In the regime of small energies, the
distance of maximum overshooting scales as E−1/2 .

The asymptotic decay rate can be directly calculated by replacing the Wightman function on the
empty Minkowski space in Eq. (8), by the above function that incorporates both contributions of the
monopole and its image. The algebraic procedure is similar to the one used to compute the decay rate
near infinite plates [15]. The resulting asymptotic decay rate assumes the form

R(E, ρ, a) =
E
2π


1 −

sin[(ρ2/a − a)E]

(ρ2/a − a)E


. (11)

Notice that when the distance of the atom to the sphere ρ is much larger than the radius a, the
decay rate becomes the same as the one in the free space. The same limit is also achieved when the
wavelength of the emitted radiation λ ∝ 1/E is much smaller than the distance of the atom to the
sphere.

The case of the atom placed in the interior region of the sphere can also be solved using themethod
of images. The resulting expression for the Wightman function in the world line of the atom and the
subsequent spontaneous decay rate are exactly the same ones obtained for the exterior problemwith
the restriction of 0 < ρ/a < 1. It is interesting to stress that when the atom is placed at the center of
the sphere, the decay rate becomes identical to that of a two-level system placed at a distance a/2 of
a perfectly reflecting infinite plate [15].

4. Dependence of the decay rate on the distinct length scales

There are three distinct length scales that influence the decay rate of the present two-level model
system near a spherical surface, namely, the radius a of the sphere, the distance ρ of the atom to
the center of the sphere, and the wavelength λ ∝ 1/E of the emitted radiation. In what follows, we
provide a detailed analysis of the dependence of the spontaneous decay rate on these length scales
for both exterior and interior problems.

In Fig. 2 we plot the relative decay rate (the spontaneous decay rate in the vicinity of the sphere
R(Ea, a/ρ) in units of the decay rate in the free space R(E) = E/2π ) as a function of the inverse of the
distance ρ of the two-level system to the center of the sphere normalized by the sphere’s radius. Two
representative values of Ea are shown. The spontaneous decay vanishes at the surface of the sphere
by construction, as imposed by the Dirichlet boundary condition. As ρ increases (decreasing values of
a/ρ), the decay rate converges to its free space value presenting oscillationswith decaying amplitudes.
At its maximum overshooting, the spontaneous decay rate becomes approximately 21% larger than



R.P.A. Lima et al. / Annals of Physics 378 (2017) 162–170 167

Fig. 3. Relative decay rate (measured in units of the free space decay rate) as a function of Ea for two representative values of
a/ρ (exterior problem). The crossover from the small to the high energy regime occurs through damped oscillations with the
maximum overshooting energy scaling as 1/ρ2 at large distances.

that in the free space. This maximum relative decay rate is achieved at larger distances of the atom to
the surface when the wavelength of the emitted radiation becomes larger (smaller energy), with the
atom’s position of maximum overshooting scaling as E−1/2.

To clearly illustrate the dependence of the decay rate on the energy of the emitted radiation, we
plot in Fig. 3 the relative decay rate as a function of Ea for two fixed distances of the atom to the
sphere’s center. The decay rate converges to the free space value for very large energies, irrespective
to the atom’s distance to the sphere. In this regime, the wavelength of the emitted radiation becomes
much smaller than the other length scales. The relative decay rate vanishes in the opposite regime of
Ea → 0. The crossover from the low to the high energy regime also occurs via damped oscillations,
with the energy corresponding to the maximum relative decay rate scaling as 1/ρ2 when ρ/a ≫ 1.

Let us now discuss the spontaneous decay process for the case of a two-level system trapped in
the interior of the sphere. We start by plotting the relative decay rate as a function of Ea for distinct
positions of the atom (see Fig. 4).When the atom is placed at the center of the sphere, we have already
commented that the decay rate becomes exactly the same as that for a two-level monopole placed at
a distance a/2 of an infinite reflecting place [15]. When the atom is displaced towards the sphere
surface, the wavelength of the decay rate oscillations increases, with the energy of the first peak
scaling with the distance of the atom to the surface d = a − ρ proportionally to 1/d in the limit
of d → 0.

A series of interesting features can be extracted from the dependence of the decay rate on the
atom’s position for the interior problem (see Fig. 5). We depict typical curves by considering some
relevant energy values. For Ea < π the decay rate is always smaller than that in the free space,
irrespective of the atom’s position. For smaller energies, the relative decay rate is further suppressed.
The maximum overshooting of the relative decay rate at the sphere’s center occurs at Ea ≃ 4.49. For
this energy, the relative decay rate decays monotonically to zero as the atom is displaced towards the
sphere’s surface. For larger energies, the relative decay rate develops damped oscillations.

We finish our analysis by reporting the decay rate averaged over the sphere’s volume

R =
1

4πa3/3

 a

0
4πρ2dρR(Ea, ρ/a). (12)

This quantity accounts for the average decay rate of randomly quenched emitters uniformly
distributed inside the sphere. The volume averaged spontaneous decay rate normalized by the free
space decay is shown in Fig. 6 as a function of Ea. It vanishes quadratically as Ea → 0. Therefore,
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Fig. 4. Relative decay rate as a function of Ea for three representative values of ρ/a (interior problem). The maximum
overshooting scales as the inverse of the atom’s distance to the surface d = ρ − awhen ρ/a → 1.

Fig. 5. Relative decay rate 2πR/E as a function of ρ/a (interior problem) for some representative values of Ea. For Ea < π the
decay rate is smaller than the one in the free space, irrespective of the atom’s position. The maximum overshooting occurs at
the sphere’s center for Ea ≃ 4.49. Oscillations are developed for larger energies.

the average decay rate is substantially suppressed when the wavelength λ of the emitted radiation
becomes larger than the size of the sphere. In the opposite regime of a ≫ λ, the average decay rate
slowly converges to the free space value. The crossover between these two regimes takes place at
a/λ ∼ 1.

5. Summary and conclusions

In summary, we have used a simple theoretical model to investigate the influence of a spherical
surface on the spontaneous decay rate process of an excited system.Within a first-order perturbation
theory, we provided an analytical expression for the spontaneous decay rate of a two-level monopole
coupled to aHermitianmassless scalar field.We demonstrated that both cases of the two-level system
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Fig. 6. Relative decay rate averaged over the sphere’s volume (interior problem) as a function of Ea. It vanishes as (Ea)2 ,
converging monotonically to the free space value as Ea → ∞.

placed in the exterior and in the interior of the sphere with a perfectly reflecting surface can be
similarly described.

We provided a detailed analysis of the dependence of the spontaneous decay rate on the energy
of the emitted radiation (or equivalently on its wavelength), the sphere’s radius and the emitter’s
position. In particular, we showed that the spontaneous decay ratemeasured in units of the free space
decay rate depicts damped oscillations as a function of either the radiation energy or the emitter’s
position with simple asymptotic scaling laws. Further, we found that the decay rate in the interior
of the sphere is always suppressed in relation to the free space decay in the low energy regime,
irrespective of the emitter’s position. At higher energies it also develops damped oscillations. The
volume averaged relative decay rate showed two distinct regimes: a quadratic vanishing for small
energies and a slow convergence to the free space behavior at high energies.

It isworthy to emphasize that the present approach does not capture polarization effects. However,
it provides a clear picture of the bare influence of bounding surfaces on the spontaneous emission
process caused by the consequent modification of the vacuum field modes near the surface. A deeper
understanding of such basic physicalmechanism is fundamental in the search of techniques to control
and tune the radiation process of trapped emitters. It would be interesting to extend the here reported
study for the case of emitters trapped in other structures such as cylinders and shells. We hope the
present work will stimulate future contributions along these lines.
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Abstract
Using a first-order time-dependent perturbation theory, we calculate the spontaneous emission rate of a two-level system
trapped between perfectly reflecting concentric spheres. The emitter is represented by a two-level monopole coupled to
a Hermitian massless scalar field satisfying Dirichlet boundary conditions in such quantum-confined low-dimensional
structure. We obtained the appropriate Green’s function evaluated in worldline of the atom which incorporates contributions
from an infinite set of variable image charges. We provide an analytical expression for the decay rate to investigate the
radiation process of the trapped atomic system. We perform a broad analysis of the dependence of the decay rate for
different relations between the radii of spheres and the emitted radiation energy. We unveil regimes of strong suppression of
the spontaneous emission rate as well as the development of irregular oscillations as a function of the quantum of emitted
energy.

Keywords Spontaneous radiation · Cavity quantum electrodynamics · Perturbation theory · Scalar field theory

1 Introduction

The control of spontaneous emission processes is funda-
mental for the appropriate performance of optoelectronic
devices, such as lighting screens, lasers, optical amplifiers,
and solar cells. The possibility of adjusting or controlling
the spontaneous emission of radiation by excited systems
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has been interpreted as an important advance for the devel-
opment of a new class of quantum optical devices, such as
nanospectrometers and nanolasers [1–5].

Field-theoretical approaches have provided important
insights on the influence of boundary walls on the radiative
process of detectors estimulated by the fluctuations of the
quantum vaccum. It has been known for a long time that
the environment has a strong influence on spontaneous
decay processes [6]. Recently, it has been shown that
the spontaneous emission can be either enhanced or
suppressed using invisibility cloaks or gradient index lenses,
with modification of the local density of optical states
[7]. When the excited system is close to the interfaces,
the boundary conditions modify the density of possible
electromagnetic modes. The possibility of enhancement
or suppression of the radiative emission rate of emitters
positioned near conducting walls, wedges, spheres, and
cylinders, or trapped in microcavities such as parallel walls,
spheres, and ellipsoids, has been extensively explored in
recent years [8–33]. Currently, the spontaneous decay rate
of quantum entangled atoms close to interfaces has been a
subject of growing interest of the scientific community [34–
37]. For a two-level system trapped between parallel walls,
the decay process can be substantially suppressed when
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the distance between the walls is much smaller than the
wavelength of the emitted radiation and strongly enhanced
due to the emergence of resonant modes (see, Ref. [16]).
When a two-level monopole is close to a perfectly reflecting
single sphere, it was recently demonstrated that the decay
rate is always suppressed in relation to the free-space decay
in the low-energy regime (atom in the interior of the single
sphere), irrespective of the emitter’s position [38].

In the present work, motivated by experiments performed
with CdSe-CdS core-shell quantum dots that showed
that the involved dimensions for different samples has
significant relevance in the decay process [39], as well as
studies on the amplification of the spontaneous emission of
such synthesized quantum-confined nanocrystals [40], we
investigate the spontaneous decay rate of a two-level system
trapped between perfectly reflecting concentric spheres (as
shown in Fig. 1). Recently, the Casimir effect between two
spherical shells has been investigated [41]. Here, we will
use the time-dependent perturbation theory within a first-
order approach to obtain an analytical expression for the
asymptotic decay rate, together with the method of images
to obtain the appropriate Green’s function that incorporates
contributions of the trapped atomic system and its infinite
set of images, satisfying Dirichlet boundary conditions. This
approach does not include polarization features but captures
the essential ingredients needed to understand the influence
of the field’s mode changes induced by the presence of

spherical shell cavities on the atom’s spontaneous emission
and the main specific contribution of the modified field
fluctuations [21, 27, 29]. This approcah has been previously
used with success in the description of photodetection
processes [42–45], in the investigation of the influence of
parallel mirrors and strings on the radiation process [16, 46],
and in recent studies of entanglement effects on radiative
processes [35, 47–52].

This paper is organized as follows. In the next section,
we will briefly present the main aspects of the first-order
perturbation theory and of the method of images applied to
an excited monopole coupled to Hermitian massless scalar
field. Further, we compute the decay rate of the atomic
system placed between two concentric spheres with radii
a and b. In Section 3, we provide a broad analysis and
discussion of the dependence of the decay rate for different
relations between the radii of two concentric spheres, and
the emitted radiation energy. In Section 4, we summarize
our most important findings and present some perspectives
for future works. Throughout this text, we will use units of
� = c = 1.

2Model and Formalism

We use a simple theoretical model to investigate the
influence of spherical surfaces on the spontaneous decay

Fig. 1 Schematic view of the
two-level system (bullet at ρ)
and four representative images
at x′

4i , x′
4i−1, x′

4i−2, x′
4i−3
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process of an excited system. The model contains the
essential features of the spontaneous emission process. The
atom is represented by a two-level monopole coupled to a
Hermitian massless scalar field.

For completeness, let us begin by briefly reviewing the
main points of the standard field-theoretical description.
The total Hamiltonian of the system is given by H =
HA + HF + Hint, where HA is the noninteracting atom’s
Hamiltonian, HF is the Hamiltonian of the free field and
Hint is the coupling between the atom and the field.

If we consider that the initial state of the system to be
in the form |τi〉 = |e〉 ⊗ |φi〉, where |e〉 is the excited state
of the atom and |φi〉 is the initial vacuum state of the field,
the time evolution in the interaction picture is governed
by the evolution operator and the probability amplitude for
the transition from the initial state at τi into the final state
|g〉 ⊗ |φf 〉 is given by the following:

〈gφf |U(τf , τi)|eφi〉 = −i

∫ τf

τi

〈gφf |Hint(τ )|eφi〉dτ, (1)

where |φf 〉 is an arbitrary state of the field and |g〉 is the
atom’s ground state.

Details of the full formalism can be found in [16, 38,
45]. The interaction Hamiltonian at time τ is written as
Hint(τ ) = c1m(τ)φ(x(τ)), where c1 is a small coupling
constant, m(τ) is the monopole operator of the atom, φ(x)

is the scalar field operator at the atom’s position, and the
transition probability from the atom’s excited state at τi = 0
into the ground state at τf is proportional on the field’s
response function F(E, τf ) given by the following:

F(E, τf )=
∫ τf

0
dτ

∫ τf

0
dτ ′eiE(τ−τ ′)G+(x(τ ), x(τ ′)), (2)

where E = Ee − Eg > 0 represents the frequency ω = E

in units of � = 1 of the emitted radiation.
It is important to emphasize that G+(x(τ ), x(τ ′)) =

〈0|φ(x(τ))φ(x(τ ′))|0〉, known as the positive scalar field
Wigthman function in the vacuum field state |0〉, is
completely dependent on the geometry of the problem and
will be used to obtain the transition probability, as described
below.

At the surface of the concentric spheres, the Wightman
function satisfies Dirichlet boundary conditions and is
null by construction. It has been previously demonstrated
that, when the atom is positioned near to infinite plates
satisfying Dirichlet boundary conditions, the decay rate is
substantially suppressed.

For the case treated here, the Wightman function can
be obtained through the method of images, where the
atom induces infinite images inside and outside the shell
region (see, Fig. 1). Therefore, the function incorporates

contributions from an infinite set of variable image charges
and can be written as follows:

G+(x(τ ), x′(τ ′)) = 1

4π2

{ −1

(ζ − iε)2 − |x − x′|2

+ lim
N→∞

N∑
i=1

[
q4i−3

(ζ − iε)2 − |x − x′
4i−3|2

+ q4i−2

(ζ − iε)2 − |x − x′
4i−2|2

− q4i−1

(ζ − iε)2 − |x − x′
4i−1|2

− q4i

(ζ − iε)2 − |x − x′
4i |2

]}
, (3)

where ζ = τ − τ ′, x is an arbitrary position, x′ is the atom’s
position; x′

4i−3, x′
4i−2, x′

4i−1, and x′
4i denotes any of the

possible positions of the successive image charges, obtained
from repeated applications of the method of images, i. e.,

x′
1 = b2

ρ
, x′

5 = b2

ρ

b2

a2
, ..., x′

4i−3 = b2

ρ

(
b2

a2

)i−1

x′
2 = a2

ρ
, x′

6 = a2

ρ

a2

b2
, ..., x′

4i−2 = a2

ρ

(
a2

b2

)i−1

x′
3 = b2ρ

a2
, x′

7 = b2ρ

a2

b2

a2
, ..., x′

4i−1 = b2ρ

a2

(
b2

a2

)i−1

x′
4 = a2ρ

b2
, x′

8 = a2ρ

b2

a2

b2
, ..., x′

4i = a2ρ

b2

(
a2

b2

)i−1

, (4)

Fig. 2 Magnitude of the image charges as a function of their respective
positions on both internal and external regions of a spherical shell of
radii a = 0.5 and b = 1. Filled (open) circles represent image charges
with the same (opposite) sign of the source charge (star symbol)

Author's personal copy



Braz J Phys

with ρ being some position of the two-level monopole
between the radii of the inner and outer spheres (a ≤ ρ ≤ b)
and a and b are their radii, respectively. In Eq. 3, q4i−3,
q4i−2, q4i−1, and q4i represent all the possible modulus of
the image’s effective charges calculated using the method
of images and are given by qj = x′

j /ρ, representing
any of the infinite image charges. Notice that the set of
terms containing q4i−3 and q4i−2 denotes contributions of
image charges whose signals are opposite to the source
charge, while the set of terms q4i−1 and q4i represent image
contributions with the same signal of the source charge. In

Fig. 3 Density plot of the Wightman function given by Eq. 3 with
ζ = 0 for two representative values of radii a a = 10 and b = 20;
b a = 10 and b = 100. The represented plane crosses the source
charge and the center of the spheres.The Wightman function is null at
the surfaces, satisfying the Dirichlet boundary conditions and diverges
over the source charge

Fig. 2, we plot the magnitude of the image charges as a
function of their respective positions, both in the internal
and external regions of the spherical shell.

Note that to obtain the Wightman function given by (3),
we consider all the terms of the series that incorporates the
contributions of the atom trapped between the concentric
spheres shown in Fig. 1, as well as its infinite images. As
we illustrate in Fig. 3, the Wightman function given by (3)
satisfies the Dirichlet boundary condition and diverges over
the source. For more details on the treatment of the Green’s
function for concentric spheres, see Ref. [53].

The asymptotic decay rate associated with spontaneous

emission processes is usually defined as R = ∂F (E,τf )

∂τf
, after

renormalizing logarithmic singularities in the transition proba-

Fig. 4 Relative decay rate (measured in units of the free-space decay
rate) as a function of Eρ for different relations between the radii of
the spheres. In a, we have a << 1 and a = b/2. For the first case
(a << 1 ), represented by the solid line (blue), the results converge
to those obtained for the case of the two-level monopole placed inside
a perfectly reflecting sphere. For a = b/2 (dashed red line), exist a
low-energy range for which the decay rate oscillates around zero. In b,
for a/b → 1, the relative decay rate converges to that obtained in the
case of parallel plates. In c, we recover the case of an atomic system
positioned in the exterior of a single sphere
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bility [45]. Following the prescription developed in [16, 38,
45], the asymptotic decay rate can be written as follows:

R(E, ρ, a, b) = E

2π

[
1 +

∑
i

sinc (Eη4i−3)

+ sinc (Eη4i−2) − sinc (Eη4i−1) − sinc (Eη4i )

]
. (5)

where ηj = ρ−x′
j√

qj
. The averaged decay rate over the volume

of the spherical shell is given by the following:

R = 3

b3 − a3

∫ b

a

ρ2dρR(E, ρ, a, b). (6)

This quantity accounts for the average decay rate of
randomly quenched emitters uniformly distributed between
the two concentric spheres.

3 Spontaneous Decay Rate in Spherical Shell
Cavities

It is important to consider three factors for the analysis
and understanding of the decay rate behavior of the two-
level detector positioned between two concentric reflecting
spheres of radii a and b (always the atomic system at
position ρ such that a ≤ ρ ≤ b): (i) the relation between the

radii of spheres; (ii) the distance ρ from the detector to the
center of the concentric spheres; (iii) the wavelength λ ∝
1/E of the emitted radiation. In this section, we provide a
detailed analysis of the spontaneous decay rate dependence
considering these factors.

In Fig. 4, we plot the relative decay rate (the spontaneous
decay rate for the atomic system trapped between the
concentric spheres in units of the decay rate in the free-
space R(Eρ, ρ) = E/2π ) as a function of the parameter
Eρ associated with the energy of the two-level monopole.
We fixed the atom’s positions as ρ = (a + b)/2.

We consider in Fig. 4 four different shell geometries:
(a) two cases a << 1 with b finite and a = b/2. In the
later case, the spacement between the spherical surfaces is
of the same order of their radii; (b) a/b → 1 or equivalently
a → b for which both surfaces radii are much larger the
spacement between them; (c) a = 1 and much smaller
then b. For the cases described in (a), the solid line (blue)
represents the relative decay rate when the a << 1. In
this case, the relative decay rate has a considerable peak in
the low-energy range (high wavelength of emitted radiation)
and converges slowly to the free space in the high energy
limit, as occurred when the two-level system was placed
inside of a single perfectly reflecting sphere [38]. Still in
(a), the dashed line (red) represents the two-level monopole
trapped between two concentric spheres with a = b/2.
It is interesting to stress that, in this case, we observe a

Fig. 5 Spontaneous decay rate
as a function of the detector
position within a spherical shell
with radii a = 0.5 and b = 1.
Distinct cases of emitted
radiation energies are illustrated.
Spontaneous decay is strongly
suppressed for low energies. At
high energies, it vanishes near
the surfaces and exhibits an
oscillatory convergence to the
rate at the free vacuum when the
detector is moved far from the
surfaces
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range of low energies for which the decay rate oscillates
around zero, as well as irregular peaks in the decay rate.
See that it is possible to suppress the spontaneous emission
in the mentioned low-energy regime. Negative values in
the decay rate have been previously attributed to the large
interaction time and associated with the limit of validity of
the perturbation theory or to non-Markovian reabsorption
processes [45, 54–57].

As it can be seen in Fig. 4b, when the spheres have
similar radii (a/b → 1 or equivalently a → b), the relative
decay rate has a low-energy range for which the decay is
fully suppressed, having an enhancement in the relative rate
thereafter. This results converges to that obtained for the
two-level monopole placed between two parallel reflecting
plates [16], as expected because the physical situation in the
referential of the atomic system is very similar, i. e., the
radii of the spheres is much larger than the distance of the
two-level monopole to their surfaces.

Notice that in the case shown in (c), there is an improvement
of the relative decay rate in the low-energy regime, with
the relative spontaneous decay oscillating and converging
smoothly to the free space rate in the high-energy regime.
For this case, the results are equivalent to those obtained
for the two-level monopole placed in the exterior region of
a perfectly reflecting spherical surface (see, Ref. [38]). In
addition, the aspect of the relative decay rate is identical to
that shown in the solid line (blue) in Fig. 4a [38].

We also investigated the dependence of the spontaneous
decay rate on the position of the detector within the
spherical shell. Typical dependences on the detector’s
position are reported in Fig. 5 for the case of a spherical shell
with inner radius a = 0.5 and outer radius b = 1. The decay
rate is quite suppressed for low energies (large wavelengths
of the emitted radiation). As the quantum of emitted
radiation energy increases, the decay rate of a detector
placed at the center of the shell approaches that expected for
a detector placed in the free vacuum because the wavelength
of the emitted radiation becomes much smaller than the
distance to both shell surfaces. Oscillations in the decay
rate are developed when the atom approaches the vicinity
of the bounding surfaces, ultimately vanishing when the
radiation’s wavelength becomes much larger than the atom-
surface distance.

In Fig. 6, we plot the average decay rate calculated
over the volume of the spherical shell as a function of the
parameter Eρ associated with the energy of the two-level
monopole. Here, we also considered a fixed value position
(ρ = (a + b)/2) from the center of the spheres for the same
shell geometries commented above.

In Fig. 6a, the solid line (blue) represents the average
relative decay rate when a << 1 with the decay rate
vanishing as (Eρ)2 and converging monotonically to the
free-space value as Eρ → ∞, as expected for the case

of a detector placed inside a single reflecting sphere [38].
Still in Fig. 6a, the dashed line (red) represents the two-
level monopole trapped between two concentric spheres
with a = b/2. In this case, we observe a low-energy range in
which the average relative decay rate oscillates around zero,
as well as the development of irregular peaks. In Fig. 6b,
when a > 1 and much smaller then b, the average relative
decay rate (solid line in blue) converges to those obtained
for the exterior problem of a two-level system placed outside
a single sphere [38]. In this case, the average relative decay
rate converges to that of a free atomic system in the limit of

Fig. 6 Average relative decay rate over the spherical shell volume as
a function of Eρ. In a (solid line in blue), when a << 1, the average
relative decay rate vanishes as (Eρ)2, converging monotonically to the
free-space value as Eρ → ∞. Still in a, the average relative decay rate
for a = b/2 (dashed line in red) oscillates around zero in the range of
low energies, having irregular peaks thereafter, converging to the free
space for high energies. In b, the solid line in blue accounts for the
average rate for the system positioned outside a single sphere. Still in
b, for a/b → 1 (dashed line in red), the decay rate vanishes at low
energies, converging to free space in the high-energy regime depicting
regular oscillations
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high energies, having an aspect similar to the rate of the two-
level system inside a single sphere (interior problem). Still
in Fig. 6b, the dashed line in red represents the case where
the radii of the spheres a/b → 1 (or equivalently a → b).
The average relative decay rate converges to that for the two-
level system positioned between parallel plates, i.e., there
is a low-energies regime for which the rate is completely
suppressed with regular oscillations associated with the
emergence of new field modes (see more details in Ref.
[16]). Furthermore, for any of the analyzed cases in Fig. 6,
the average relative decay rate is substantially suppressed
when the wavelength λ of the emitted radiation becomes
much larger than the size of the spherical shell cavity. In the
opposite regime, the average decay rate converges slowly to
the free-space value.

4 Summary and Conclusions

In summary, we used a simple field-theoretical model
containing the essential characteristics needed to describe
spontaneous decay processes to investigate the influence
of two concentric perfectly reflecting spheres on the decay
rate of a trapped excited system. Using time-dependent
perturbation theory within a first-order approximation, we
calculated an analytical expression for the spontaneous
decay rate of a two-level monopole coupled to a Hermitian
massless scalar field.

We showed that the results already obtained in the
literature for the two-level system between parallel plates
and in the vicinity of a single sphere can be recovered as
asymptotic cases of the problem treated here. Furthermore,
we provide a detailed analysis of the dependence of the
spontaneous decay rate on the energy of the emitted
radiation (or equivalently on its wavelength), as well as on
the different relation between the radii of the concentric
spheres and the detector’s position. We observed a low-
energy range for which the decay rate oscillates around zero,
as well as irregular peaks in the decay rate. We have verified
that it is possible to suppress the spontaneous emission in
the mentioned low-energy range. In the opposite regime, the
decay rate converges slowly to the free-space value. The
same characteristics were observed for the average relative
decay rate. It is important to stress that the decay rate
develops irregular oscillations as a function of the quantum
of energy radiated within the spherical shell, in contrast
with the regular oscillations observed for the similar process
occurring in a cavity composed by parallel plates. These
irregular oscillations reflect the non-uniform spacement and
variability of the infinite set of image charges.

It is interesting to stress that the present approach pro-
vides a clear picture of the influence of curved bound-
ing surfaces on the spontaneous emission processes. The

changes in the decay rate are a direct consequence of the
modification of the vacuum field modes in the vicinity of
the spherical surfaces. The detailed understanding of these
important effects finds great relevance in the control and
adjustment of spontaneous emission processes. These are
fundamental in the definition of the performance of optoelec-
tronic devices which are usually based on photosensible par-
ticles trapped in spherical coats [39]. The present approach
can be extended to account for polarization effects due to the
coupling between the electrical dipole of the emitter and the
electromagnetic field in the vacuum state [37, 58]. We hope
that the present work can stimulate further contributions
aiming to uncover the influence of other shell geometries in
the decay process of trapped emitters.
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