TESE DE DOUTORADO

Aspectos da Transmissão de Ondas Eletromagnéticas em Filmes de Multicamadas

Elton Malta Nascimento

Universidade Federal de Alagoas Instituto de Física

Aspectos da Transmissão de Ondas Eletromagnéticas em Filmes de Multicamadas

Elton Malta Nascimento

Tese apresentada ao Instituto de Física da Universidade Federal de Alagoas como parte dos créditos para a obtenção do título de Doutor em Ciências.

Orientador: Dr. Marcelo Leite Lyra Co-orientador: Dr. Francisco Anacleto B. Fidelis de Moura

Maceió - Alagoas - Brasil Fevereiro - 2009

Dedico este trabalho a todos os meus ex-professores, peças fundamentais na minha formação e opção profissional.

AGRADECIMENTOS

As palavras contidas nesta seção representam uma tímida maneira de expressar minha imensa gratidão a todos que contribuíram para a conclusão deste trabalho.

À minha família, que sempre me apoiou e me ajudou em todos os momentos, mesmo estando fisicamente distante deles.

Ao meu orientador prof. Dr. Marcelo Leite Lyra, pela paciência e confiança depositada. A orientação e convivência com o professor Marcelo Lyra não apenas resultou na conclusão deste trabalho, mas também serviu para mim de modelo de profissional e pessoa. Sem dúvida um exemplo a ser seguindo.

Ao meu co-orientador prof. Dr. Francisco A. B. F. de Moura, que não apenas foi um co-orientador mas também um companheiro e incentivador do meu trabalho. Seus conselhos e opiniões foram de grande importância para guiar minha profissional.

À minha companheira Sybelle Oliveira, por toda a dedicação, carinho e companheirismo gratuito oferecidos a mim durante esta etapa, e pela compreensão em dividir desigualmente o meu tempo com as tarefas pertinentes ao doutoramento.

Ao casal Wandearley Dias e Maria Socorro Pereira, sempre companheiros e prestativos em todos os momentos, mostrando o verdadeiro significado da amizade.

Ao prof. Dr. Antônio Delson C. de Jesus, do Departamento de Física da UEFS. O incentivo e a insistência do prof. Delson durante o meu programa de iniciação científica foram elementos fundamentais para que eu atingisse esta conquista. Sereilhe eternamente grato por isso. À profa. Maria Tereza de Araujo, pela consideração e amizade. Agradeço também a oportunidade que me foi dada para participar de todas as edições da Expofísica, evento que sempre me trouxe muita alegria e satisfação.

Às inesquecíveis amizades que fiz no Instituto de Física da UFAL: André Moura, Askery Canabarro, Arlan Ferreira, Agnaldo dos Santos, Itamar Vidal, Caio Faustino, Francisco de Assis, Nuccia Carla Sousa, Gentil da Silva II, Wagner da Silva, José Ricardo Duarte, Fabio Zanetti, Amadeu Bandeira, Marcelo Felisberto, Ildemir dos Santos, Vinicius Manzoni, Samuel Albuquerque, Pedro Vanlentim e Willamys Silva.

Ao colega Dr. Ítalo Marcos Nunes de Oliveira, que se mostrou uma grande pessoa e foi de fundamental importância durante a etapa final das pesquisas que levaram aos resultados mostrados nesta tese.

Ao prof. Marcos Vinícius Dias Vermelho, pela oportunidade que me foi dada de fazer parte de um trabalho de pesquisa na área experimental.

Ao prof. Carlos Jacinto da Silva, pela importante ajuda dada na compreensão de temas relacionados à óptica e pelos valiosos conselhos e dicas que me ajudaram na minha aprovação no concurso público da UFRB.

Aos demais professores do IF/UFAL, que por mais que não estivessem diretamente relacionados ao programa de doutorado, tiverem sua parcela de participação.

Ao CNPq pelo apoio financeiro.

Resumo

Nesta tese, estudamos vários aspectos da transmissividade de uma onda eletromagnética plana monocromática incidindo sobre algumas configurações de filmes de multicamadas. Aplicando o formalismo de matriz de transferência, inicialmente tratamos o caso de uma seqüência binária de N camadas dielétricas distribuidas aleatoriamente, cujas características das camadas obedecem à condição de Bragg $(n_A d_A = n_B d_B)$. Vemos que o modo para o qual o caminho óptico das camadas corresponde a meio comprimento de onda da luz incidente é insensível à desordem e completamente transparente. A média da transmissão na região de freqüência ao redor desta ressonância cai com $1/N^{1/2}$ e o comprimento de localização diverge quadraticamente à medida que a freqüência da luz se aproxima desta ressonância. Na vizinhança dos modos de quarto de onda, o comprimento de localização diverge logaritmicamente e a média espectral da transmissão apresenta uma dependência com N do tipo exponencial alongada. Ainda neste modo, o expoente de Lyapunov para diferentes realizações de desordem apresenta uma distribuição Gaussiana, levando a leis de escala distintas para as médias geométrica e aritmética da transmissão. As leis de escala para os modos de meio e quarto de onda apresentam-se análogas às obtidas no modelo eletrônico 1D de Anderson com dímeros aleatórios e com desordem nos termos de hopping do hamiltoniano respectivamente. Estes sistemas são conhecidos por apresentarem uma violação similar para a localização exponencial de Anderson usual. Estes comportamentos de escala foram comparados ao caso de uma estrutura desordenada onde uma das camadas é constituida por metamaterial. Vimos que a média espectral da transmissão ao redor do modo completamente transmissível decai de maneira mais rápida com o aumento do número de camadas (1/N). A ação conjunta da forte localização e do surgimento de modos ressonantes dentro da banda

proibida leva a uma dependência não-monotônica da transmissão com o grau de desordem, que atinge um mínimo para um grau de desordem intermediário. Utilizando os mesmos parâmetros de construção do primeiro caso, investigamos a influência de uma distribuição binária de camadas aperiódica incomensurável. A aperiodicidade é introduzida baseando-se em uma lei senoidal cuja fase φ varia como uma lei de potência do índice das camadas ($\varphi \propto j^{\nu}$). Para $\nu > 1$, a seqüência resultante é efetivamente descorrelacionada, levando à localização de Anderson usual da luz. A transição de uma estrutura uniforme em $\nu = 0$ para uma estrutura quasi-periódica em $\nu = 1$ é assinalada por um mínino na média espectral da transmissão. Realizamos uma análise espectral do sequência de índices de refração para mostrar sua íntima relação com o comportamento encontrado para a média da transmissão. O último caso de multicamada estudado trata-se da utilização de cristal líquido colestérico (ChLC) na composição do filme. Consideramos uma estrutura de ChLC com ângulos de defeito que obedecem uma seqüência quasi-periódica de Fibonacci assim como uma estrutura formada por camadas alternadas de ChLC e dielétrico isotrópico. Utilizando o formalismo matricial de Berreman, obtivemos o espectro de reflexão e o diagrama cromático destas estruturas. A cromaticidade associada apresentou dependência com o ângulo de incidência. No entanto, para o caso com ângulo de defeito Fibonnaciano, o deslocamento cromático pode ser controlado pelo ângulo de defeito α . Para a geração F_4 com $\alpha = \pi/3$, a cromaticidade da luz refletida se mantém próxima à região do branco para um largo intervalo de ângulos de incidência, seguido por um deslocamento para o azul em incidências intermediários. Esta configuração se aproxima de um refletor RGB omnidirecional. Por outro lado, a estrutura com camadas alternadas exibe uma seqüência complexa de deslocamentos cromáticos com o aumento do ângulo e incidência.

Abstract

In this thesis, we study some aspects of the transmission of a monochromatic electromagnectic plane wave inciding into some configurations of multilayered films. Using a transfer matrix formalism, we firstly investigate the case of a binary sequence of N dielectric layers distributed in a random way, where the layer parameters follow the Bragg condition $(n_A d_A = n_B d_B)$. We could observe that the mode for which the optical thickness of the layers corresponds to half-wavelength is insensitive to disorder and fully transparent. The average transmission in a frequency range around this resonance decays as $1/N^{1/2}$, and the localization length diverges quadratically as this resonance mode is approached. In the vicinity of the quarter-wavelength, the localization length diverges logarithmically and the frequency averaged transmission exhibits an stretched exponential dependence on the total thickness. At the quarter-wavelength resonance, the Lyapunov exponent for different realizations of disorder has a Gaussian distribution leading to distinct scaling laws for the geometric and arithmetic averages of the transmission. The scaling laws for the half- and quarter-wavelength modes are analogous to those found in electronic onedimensional Anderson models with random dimensional pure off-diagonal disorder, respectively, which are known to display similar violations of the usual exponential Anderson localization. These scale behavior were compared with the case of a disordered structure where one kind of constituint material is a metamaterial. We observe that the spectrally averaged transmission in a frequency range around the fully transparent resonant mode is shown to decay faster as the number of layer increases (1/N). The interplay of strong localization and the emergence of resonant modes within the gap leads to a non-monotonous disorder dependence of the transmission that reaches a minimum at an intermediate disorder strength. Using

the same layer parameters of the first case, we investigate the influence of a binary aperiodic incommensurated sequence of layers. The aperiodicity is introduced by considering the sequence of refractive indices to follow a sinusoidal function whose phase φ varies as a power-law of the layer index ($\varphi \propto j^{\nu}$). For $\nu > 1$ the resulting sequence is effectively uncorrelated leading to the usual Anderson localization of light. The crossover from a uniform structure at $\nu = 0$ to a quasi-periodic structure at $\nu = 1$ is signaled by a minimum at the spectrally averaged transmission. We perform a spectral analysis of the refractive index sequence to show its close connection to the main features exhibited by the averaged optical transmittance. The last case studied is about the inclusion of a cholesteric liquid crystal (ChLC) in the film composition. We considered a single-pitched ChLC multilayered system with quasiperiodic Fibonaccian phase defects as well as an alternate sequence of single-pitched ChLC and isotropic dielectric layers. Using the Berreman 4×4 matrix formalism, we numerically obtain the reflection spectrum and the chromaticity diagram of these structures. The associated chromaticity is shown to depend on the incidence angle. However, for the ChLC Fibonaccian phase defect system, the color shift can be controlled by the defect angle α . For the F_4 generation and $\alpha = \pi/3$, the chromaticity of the reflected light remains close to the white color region for a wide range of incidence angles, followed by a blue-shift at intermediate incidence angles. This is the setup that produces the nearest omnidirectional red-green-blue condition for the reflection spectrum. On the other hand, the structure with alternate ChLC and isotropic layers exhibits a complex sequence of color shifts when the incidence angle is increased.

Sumário

	Folh	a de rosto	i
	Ded	icatória	ii
	Agra	adecimentos	iii
	Rest	umo	v
	Abs	tract	vii
1	Intr	rodução	4
	1.1	O Modelo de Anderson	7
		1.1.1 Teoria de Escala para a Transição de Anderson	9
	1.2	Multicamadas Dielétricas Periódicas: Cristal Fotônico 1D	14
2	Mu	lticamadas Aleatórias	20
	2.1	Método da Matriz de Transferência	21
		2.1.1 Coeficientes de transmissão e reflexão	30
	2.2	Resultados	31
3	Mu	lticamadas com Modulação Aperiódica	42
	3.1	Distribuição Binária Aperiódica	45
	3.2	Resultados	46

4	Mu	ticamadas com Metamateriais	53		
	4.1	Resultado	56		
5	Mu	ticamadas com Cristal Líquido Colestérico	65		
	5.1	Cristal Líquido Colestérico	66		
	5.2	Matriz de Berreman 4×4	70		
	5.3	Coeficiente de Transmissão	75		
	5.4	Espaço de Cores CIE 1931	78		
		5.4.1 Diagrama Cromático	81		
	5.5	Resultados	82		
6	Sun	nário e Conclusões	90		
	Referências 95				
7	Ane	Anexo 102			
	7.1	"Scaling laws for the transmission of random binary dielectric multi-			
		layered structures", E. M. Nascimento, F. A. B. F. de Moura, M. L.			
		Lyra. Physical Review B 76 , 115120 (2007)	102		
	7.2	"Suppressed transmission in aperiodically modulated multilayered di-			
		electric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L.			
		Lyra. Photonics and Nanostructures - Fundamentals and Applicati-			
		ons DOI: 10.1016/j.photonics.2008.12.004	108		
	7.3	"Finite-size scaling and disorder effect on the transmissivity of mul-			
		tilayered structures with metamaterials", E. M. Nascimento, F. A. B.			
		F. de Moura, M. L. Lyra. Optics Express 16 , 6860 (2008)	115		

7.4	"Reflection chromaticity of multilayered structures incorporating cho-
	lesteric liquid crystals", E. M. Nascimento, I. N. de Oliveira, M. L.
	Lyra. Joural of Applied Physics 104 , 103511 (2008)

Capítulo 1

Introdução

Nas últimos duas décadas vem crescendo o interesse da ciência pelo estudo da propagação de ondas eletromagnéticas nas mais diferentes estruturas fotônicas. A possibilidade de controlar a transmissão, emissão e detecção da luz tem aberto um vasto leque de aplicações tecnológicas, como a confecção de novos dispositivos optoeletrônicos e a melhoria do sistema de telecomunicações. [1].

Por conta da simplicidade de construção, uma das estruturas mais estudadas neste contexto são os filmes de multicamadas dielétricas. Originalmente propostos por Yablonovitch [2], estes sistemas tratam-se da superposição de finas camadas de material dielétrico com espessura d_i da ordem do comprimento de onda da luz incidente e índice de refração n_i . Posicionando as camadas de maneira que a distribuição de índices de refração seja periódica, o espectro de transmissão apresenta uma estrutura de bandas tal que para determinadas faixas de freqüência existem modos transmissíveis e para outras regiões do espectro não existem modos propagantes. Em analogia aos cristais atômicos, esta banda de modos proibidos recebe o nome de *band-gap fotônico* (PBG) e a estrutura como um todo de *Cristal Fotônico* Unidimensional (PhC-1D)[2]. As características do PBG, como a largura e a posição no espectro, são controladas pelos parâmetros de construção das camadas, como as espessuras e sua distribuição ao longo do filme e o valor dos índices de refração utilizados. Se, por exemplo, tomarmos um filme com N camadas formado por uma seqüência alternada de dois tipos de materiais dielétricos $A \in B$ (seqüência binária), cujos parâmetros de construção obedecem à condição de Bragg $n_A d_A = n_B d_B$, o modo central do primeiro PBG obtido para uma incidência normal de luz será caracterizado pelo comprimento de onda $\lambda_0 = 4n_A d_A = 4n_B d_B$. Para incidência oblíqua, a luz experimenta uma periodicidade diferente se comparada com o caso de incidência normal, por conta disso, as propriedades do PGB também sofrem modificações, de forma que nem sempre é possível obter um PBG comum à qualquer ângulo de incidência e a qualquer polarização utilizando uma estrutura dielétrica unidimensional. Este tipo de PBG é chamado de *omnidirecional total* e só pode ser obtido em PC 1D sob determinadas condições especiais [3, 4].

Existem várias técnicas para fabricação de uma estrutura de cristal fotônico unidimensional, uma delas é a utilização de *Silício Poroso* [5]. Este material proporciona a obtenção de uma faixa de valores de índice de refração que varia com o grau de dopagem com Si. Para silício poroso levemente dopado, é possível uma faixa de valores de índice de refração entre 1.4 e 1.7. Para o caso fortemente dopado, esta faixa cresce para valores entre 1.4 e 2.4.

A manipulação na distribuição de camadas pode fazer surgir fenômenos novos e relevantes. Estruturas que obedecem distribuições quasi-periódicas podem apresentar diferentes tipos de PBGs, como a formação de uma estrutura fractal de gaps em multicamadas do tipo Thue-Morse [6]. Para uma distribuição de camadas que obedece a seqüência quasi-periódica de Fibonacci, o espectro de energia é consistente com o conjunto de Cantor auto-similar [7, 8, 9], onde existem bandas de modos não transmissíveis similares aos PBGs do cristal fotônico[10] e fora destas regiões os modos se apresentam criticamente localizados, ou seja, apresentam um decaimento tipo lei de potência [11].

Devido à sua natureza ondulatória, a propagação de luz em filmes de multicamadas aleatórias representa uma analogia com o modelo de Anderson para elétrons não interagentes em sistemas desordenados. Segundo a lei de escala de Anderson para um sistema eletrônico unidimensional, todos os auto-estados de um elétron não interagente se apresentam exponencialmente localizado para qualquer grau de desordem [12]. Este fenômeno também é observado para ondas eletromagnéticas e recebe o nome de localização de Anderson da luz [13, 14, 15]. Em filmes de multicamadas aleatórias, as múltiplas interferências geradas pelas ondas espalhadas nas interfaces são responsáveis por um decaimento exponencial da onda resultante, de forma que a média do logaritmo da transmissão sobre muitas realizações de desordem decai linearmente com a largura da amostra L [16]. O efeito combinado de reflexão de Bragg e localização da luz resulta em um alargamento do band gap fotônico, de forma parte do espectro apresenta modos refletidos. Esta característica possibilita a construção de dispositivos refletores para uma larga faixa de freqüência [19, 20]. Em recentes pesquisas foi observado que o espectro de transmissão de uma estrutura binária de multicamadas com desordem posicional, constituída de camadas dielétricas de mesmo caminho óptico, apresenta picos associados à estados chamados necklace [43]. Tais estados estão relacionados com a hibridização de modos degenerados e localizados em diferentes regiões da estrutura.

Nesta tese serão apresentados resultados de um estudo que visa analisar as características da transmissão de ondas eletromagnéticas em algumas estruturas de multicamadas. Inicialmente será apresentado um estudo de algumas leis de escala para a transmissão, como a transmissão espectral média e o comprimento de localização, em um sistema desordenado composto por dois tipos de dielétricos ordinários que obedecem a condição de Bragg. Utilizando o mesmo sistema físico, analisamos a influência de uma distribuição quasi-periódica nestas leis de escala, o que será apresentado no capítulo 3. A influência dos metamateriais é apresentada no capítulo 4, onde empregamos uma estrutura de multicamadas composta por material dielétrico ordinário e metamaterial distribuídas aleatoriamente. A última estrutura analisada, mostrada no capítulo 5, é constituída por camadas anisotrópicas de cristal líquido colestérico. Neste estudo introduzimos novas quantidades como o diagrama cromático CIE, onde investigamos a variação cromática do espectro de reflexão com a mudança do angulo de incidência.

1.1 O Modelo de Anderson

As predições para sistemas ópticos desordenados se assemelham às obtidas no modelo de Anderson para elétrons não interagentes, por conta disso seus principais resultados serviram como base para nossas pesquisas e serão constantemente citados ao logo desta tese.

Em 1958, P. W. Anderson [21] utilizou um modelo que permitiu estudar os efeitos da desordem sobre a função de onda eletrônica. Seu modelo considera os elétrons movendo-se sobre a influência de um potencial aleatório. Na representação de Wannier (*tight biding*), o Hamiltoniano de Anderson pode ser escrito como:

$$H = \sum_{i} \epsilon_i |i\rangle \langle i| + \sum_{i \neq j} t_{ij} |i\rangle \langle j|$$
(1.1)

O estado $|i\rangle$ representa o orbital atômico centrado no sítio *i*. O termo ϵ_i é a energia do sítio *i* e t_{ij} é chamado de integral de transferência entre os sítios *i* e *j*, também conhecido como amplitude de *hopping*. A desordem é introduzida nas energias ϵ_i que são números aleatórios distribuídos no intervalo [-W, W]. O parâmetro *W*, a largura da distribuição de desordem, controla o grau de desordem do sistema. A interação Coulombiana entre os elétrons é desprezada neste Hamiltoniano. Com este modelo, Anderson mostrou a existência da chamada "localização da função de onda eletrônica" pela desordem.

Vamos discutir de forma qualitativa o papel da desordem na localização dos estados eletrônicos. Considere o modelo de Block com potencial periódico nulo (U(r) = 0), ou seja, um elétron livre. Se introduzirmos uma única barreira de potencial, a função de onda será parcialmente transmitida e parcialmente refletida pela barreira. Se, ao invés de uma única barreira, intruzirmos duas barreiras de potencial, a função de onda sofrerá duas reflexões. As duas barreiras geram ondas refletidas e incidentes que podem sofrer interferências destrutivas ou construtivas a depender da diferença de fase existente. Estas interferências podem mudar bastante o padrão da função de onda. Se um potencial aleatório estiver presente, o que pode ser representado por barreiras de potencial em posições aleatórias ou com intensidades aleatórias, a função de onda sofrerá várias reflexões as quais não mantêm coerência de fase. Estas reflexões causam interferências destrutivas que induzem uma localização exponencial da função de onda. A função de onda se concentra em uma pequena região e tem valor desprezível em qualquer outra região do sólido. Neste regime, o sistema está na fase isolante. No caso de ondas estendidas, onde o elétron fica itinerante na cadeia, temos a fase metálica. O modelo de Anderson tridimensional apresenta uma transição metal-isolante para um valor crítico da força da desordem (W).

Uma função de onda é dita exponencialmente localizada quando suas aplitudes de probabilidade decaem exponencialmente à medida que nos afastamos do centro do pacote, de acordo com uma lei do tipo $e^{-R/\lambda}$, onde λ é o chamado comprimento de localização, e como o próprio nome sugere, está relacionado com o grau de localização do estado.

No final da década de 1970, Anderson, juntamente com Abrahams, Licciardello e Ramakrishman [12], construíram uma teoria de escala para a condutância generalizada do modelo de Anderson e obtiveram a dependência da transição Metal-Isolante com a dimensão. Estes resultados tiveram grande repercussão na comunidade científica. O próprio Ramakrishnan, em entrevista para a *APS News*, atribuiu todo este sucesso ao fato de o trabalho apresentar predições experimentalmente testáveis e não usuais, baseados em um novo processo de interferência com muitoscorpos que explorava o processo de localização, um tema que atraia muito a atenção dos cientistas no final da década de 70. Hoje, o artigo publicado por eles em 1979 é um dos 10 mais citados da *Physical Review Letter* e Philip Warren Anderson chegou a ganhar o Prêmio Nobel de Física de 1977 por sua grande contribuição no estudo de sistemas desordenados.

1.1.1 Teoria de Escala para a Transição de Anderson.

Vamos apresentar a teoria de escala que foi originalmente utilizada por Abrahams, Anderson, Licciardello, e Ramakrishnan [12] para se obter a dependência da transição de Anderson com a dimensão. A hipótese básica desta teoria de escala é que uma única quantidade característica, a condutância generalizada g, controla a transição de estado estendido para localizado em T = 0. A teoria de escala foi aplicada na reformulação do modelo de Anderson feita por Thouless [22]. Na abordagem de Thouless as unidades básicas são agora caixas de volume l^d que contêm muitos sítios. O sólido é formado de várias caixas acopladas uma ás outras.

As energias características do modelo de Anderson W e t são mapeadas respectivamente no espaçamento médio entre os níveis ΔE e no deslocamento δE causado por mudanças nas condições de contorno. Um elegante argumento eurístico, baseado no princípio da incerteza, conecta δE com a condutividade σ no limite macroscópico.

Através do princípio da incerteza pode-se estabelecer:

$$\delta E = \hbar/t_D, \tag{1.2}$$

onde $t_D = L^2/D$ é o tempo necessário para um pacote de onda eletrônico difundir até os contornos de uma caixa de lado L, onde D é a constante de difusão. Usando a relação de Einstein entre a condutividade e as propriedades de difusão $(\sigma = e^2 D n(E))$ temos :

$$\delta E = \frac{\sigma\hbar}{e^2 \left(L^2 \ n(E)\right)}.\tag{1.3}$$

A densidade de estados média pode ser escrita como função do espaçamento médio entre os níveis $n(E) = 1/(L^d \Delta E)$. Logo, a razão $\Delta E/\delta E$ é agora adotada como sendo uma medida da força da desordem no sistema, análoga a razão W/t no modelo de Anderson tradicional. Estados estendidos são sensíveis a mudanças nas condições de contorno ($\delta E > \Delta E$), enquanto que estados localizados não o são ($\delta E < \Delta E$). Portanto, utilizando estas equações, a condutância generalizada definida por $g(L) \equiv$ $\frac{\delta E}{\Delta E}$ tem o seguinte comportamento de escala:

$$g(L) = (\hbar/e^2) \sigma L^{d-2}.$$
 (1.4)

A teoria de escala examina a dependência de g(L) com o comprimento de escala utilizado. Seja $g_0 = g(L_0) = \delta E(L_0)/\Delta E(L_0)$ a condutância generalizada para um sistema composto de caixas acopladas de volume L_0^d . A teoria de escala assume que, dado g_0 em uma escala de comprimento L_0 , podemos obter g numa escala maior $L = L_0 b$. Na nova escala $L_0 b$ a condutância g é completamente determinada pelo valor anterior g_0 e pelo fator de escala b. O comportamento de escala da função gpode ser obtido a partir da função $\beta(g)$:

$$\beta(g) = \frac{d \ln g(L)}{d \ln L}.$$
(1.5)

Para β positivo, g cresce com o crescimento de L; para β negativo, g decresce com o crescimento de L. O comportamento qualitativo de $\beta(g)$ está representado na figura 1.1 para d = 1, 2 e 3. A curva mostrada na figura 1.1 foi proposta por Abrahams *et al* [12].

O comportamento qualitativo da função $\beta(g)$ pode ser determinado a partir dos seus limites assintóticos $(g \to \infty e g \to 0)$. Para g grande podemos usar a Eq. (1.4) e mostrar que

$$\lim_{g \to \infty} \beta(g) = d - 2. \tag{1.6}$$

Logo, $\beta(\infty)$ é +1 em d = 3, 0 em d = 2 e -1 em d = 1, como mostrado na figura 1.1. Para g pequeno, ou seja, no limite de fraco acoplamento e forte desordem, o teorema de Anderson prevê que os estados eletrônicos são localizados e decaem

Figura 1.1: O comportamento qualitativo de $\beta(g)$ para d = 1, 2 e 3 na teoria de escala apresentada por Abrahams, Anderson, Licciardello e Ramakrishnam.

exponencialmente com a distância. Nos contornos de uma caixa de dimensão linear L, a amplitude da função de onda de um elétron localizado dentro da caixa é da ordem de $e^{-\gamma L}$, onde γ é o expoente de Lyapunov (inverso do comprimento de localização λ).

O acoplamento entre as caixas também decaem exponencialmente com L, de forma que $g(L) \propto e^{-\gamma L}$. Usando a Eq. (1.5), temos,

$$\lim_{g \to 0} \beta(g) = \ln g. \tag{1.7}$$

e portanto, $\beta(g)$ se aproxima de $-\infty$ quando g tende a zero, independente da

dimensão. Assumindo que $\beta(g)$ tenha variação lenta e monotônica entre os limites $g \to \infty$ e $g \to 0$, nossa análise reproduz o comportamento qualitativo da figura 1.1. As setas do diagrama de fluxo sobre as curvas representam a direção em que g sofre variações quando L cresce. Para d = 1 e d = 2 as setas indicam que g sempre diminue quando L cresce. Em d = 3 temos dois comportamentos: Abaixo de um certo g_c ($\beta(g) < 0$) as setas do diagrama de fluxo indicam que a condutância generalizada g diminue quando L cresce; acima de g_c ($\beta(g) > 0$) o comportamento é contrário, g cresce quando L cresce. O ponto no diagrama de fluxo ($g_c, \beta(g_c) = 0$) é chamado ponto fixo instável. Este diagrama mostra claramente a dependência da transição de Anderson com a dimensão: em 1d e 2d não existe transição metal-isolante, com a condutividade indo sempre a zero quando $l \to \infty$; em 3d existe uma transição metal-isolante. O comportamento crítico perto desta transição em 3d também foi obtido apartir da teoria de escala [23]. O comprimento de localização λ , próximos da energia crítica de transição (mobility edge) tem um comportamento tipo lei de poténcia $\lambda \propto (E - E_c)^{-\nu}$ com expoente $\nu \approx 1.57$ [24, 25, 26, 27].

As descobertas feitas por Anderson foram de fundamental importância para o entendimento das propriedades de condução da matéria. Para um sólido que se encontre a temperatura nula e desconsiderando ligações com outros graus de liberdade, como fônos, ou interações mútuas, uma partícula que se encontre exponencialmente localizada não apresenta participação no processo de condução, pois só há probabilidade dela ser encontrada em uma região finita do sólido, enquanto que, em um estado estendido, a partícula se torna itinerante, pois apresenta probabilidade finita de ser encontrada em qualquer sítio da rede. Como consequência disso, se só existirem estados localizados proximos à energia de Fermi, o sistema será um isolante, ou seja, no limite de T=0K, a condutividade DC (limite de baixa frequência para a condutividade linear) será nula. Por outro lado, caso estes estados se apresentem estendidos, esta condutividade será finita e o sistema se torna um condutor. Para temperaturas acima de 0K, o fenômeno da condutividade é explicado por excitações térmicas. Apesar das muitas simplificações, o modelo de Anderson é considerado até hoje a estratégia mais eficiente para estudar os efeitos da desordem sobre as propriedades de transporte eletrônico.

Diversos outros fenômenos também foram explicados com base nas teorias de sistemas desordenados, como exemplo, a existência de Efeito Hall quantizado, que está associado à presença de elétrons em estados localizados quando o material é submetido à um campo magnético externo [28]. Além disso, sistemas macroscópicos, como ondas eletromagnéticas ou ondas mecânicas em meio líquido, assim como nos sistemas quânticos, também apresentam diversas propriedades de localização quando submetidos a algum tipo de desordem [29, 30, 31], o que mostra a vasta aplicabilidade deste ramo teórico.

1.2 Multicamadas Dielétricas Periódicas: Cristal Fotônico 1D

Para se ter um parâmetro de comparação a cerca do papel das diferentes distribuições de camadas utilizadas neste trabalho, faz-se necessário um entendimento inicial a cerca do caso de multicamadas periódicas.

Cristais Fotônicos são estruturas regulares de materiais ópticos com diferentes índices de refração (fig. 1.2. Este arranjo assemelha-se ao de um cristal atômico, com a diferença de que a constante de rede (a) para cristais atômicos se encontra na ordem de Angstrons de comprimento, enquanto que para os cristais fotônicos

Figura 1.2: Diagrama representando uma estrutura binária de multicamadas periódicas.

está na ordem do comprimento da onda eletromagnética incidente, que para a luz visível está em torno de 1 nm. As semelhanças entre o cristal atômico e o fotônico não existem apenas em seus arranjos espaciais, na verdade muitas idéias básicas são comuns em ambos os cristais e servirão como base para o entendimento dos resultados apresentados nesta tese.

De acordo com a dimensionalidade do empilhamento das camadas, podemos classificar os cristais fotônicos em unidimensional, bidimensional e tridimensional. A fabricação destes dispositivos para operar com microondas é relativamente simples, já na região do visível, em especial para o caso 3D, sua fabricação é mais difícil por conta do pequeno valor de constante de rede. A maneira mais simples de se obter um cristal fotônico 1D é através do empilhamento periódico de camadas dielétricas com índice de refração diferentes, cuja espessura é da ordem do comprimento da onda eletromagnética considerada.

Para obter uma descrição quantitativa do cristal fotônico unidimensional, tomemos o eixo x na direção perpendicular à superfície das camadas dielétricas e o campo elétrico propagando-se na direção deste eixo e linearmente polarizada ao longo da direção do eixo y. Desta forma, o campo elétrico E(x,t) será descrito pela equação:

$$\frac{c^2}{\epsilon(x)}\frac{\partial^2 E}{\partial x^2} = \frac{\partial^2 E}{\partial t^2}$$
(1.8)

onde $\epsilon(x)$ representa a dependência espacial da constante dielétrica relativa do cristal fotônico 1D, chamada de *função dielétrica*. Na (1.8), assumimos a permeabilidade magnética do cristal fotônico como sendo igual à do espaço livre ($\mu = \mu_0$). Devido à periodicidade de $\epsilon(x)$ em relação à x, temos que $\epsilon(x + a) = \epsilon(x)$ e sua inversa $\epsilon^{-1}(x)$ também será periódica, podendo portanto ser expadida em série de Fourier:

$$\epsilon^{-1}(x) = \sum_{m=-\infty}^{\infty} \kappa_m \exp\left(i\frac{2\pi m}{a}x\right)$$
(1.9)

onde m é um número inteiro e κ_m são os coeficientes de Fourier. Assumindo $\epsilon(x)$ real, teremos que $\kappa_{-m} = \kappa_m^*$. Assim como ocorre para estruturas atômicos periódicas, a propagação nesta estrutura é regida pelo teorema de Bloch, onde qualquer automodo no cristal 1D é caracterizado por um número de onda k e dado pela expressão:

$$E(x,t) \equiv E_k(x,t) = u_k(x) \exp\left\{i(kx - \omega_k t)\right\}$$
(1.10)

onde ω_k representa as auto-freqüências angulares e $u_k(x)$ são funções periódicas tal que $u_k(x+a) = u_k(x)$, podendo ser portanto expandido em série de Fourier. Como resultado, a eq. (1.10) assume a forma:

$$E_k(x,t) = \sum_{m=-\infty}^{\infty} E_m \exp\left\{i\left(k + \frac{2\pi m}{a}\right)x - i\omega_k t\right\}$$
(1.11)

onde E_m são os coeficientes de Fourier. Por medida de simplificação, assumiremos que apenas as componentes com m = 0 e $m = \pm 1$ são predominantes na expansão 1.9:

$$\epsilon(x)^{-1} \approx \kappa_0 + \kappa_1 \exp\left(i\frac{2\pi}{a}x\right) + \kappa_{-1} \exp\left(-i\frac{2\pi}{a}x\right)$$
 (1.12)

substituindo (1.11) e (1.12) na equação de onda (1.8), obtemos:

$$\kappa_{1} \left\{ k + \frac{2(m-1)\pi}{a} \right\}^{2} E_{m-1} + \kappa_{-1} \left\{ k + \frac{2(m+1)\pi}{a} \right\}^{2} E_{m+1}$$
(1.13)
$$\approx \left\{ \frac{\omega_{k}^{2}}{c^{2}} - \kappa_{0} \left(k + \frac{2m\pi}{a} \right)^{2} \right\} E_{m}$$

Para m = 0,

$$E_0 \approx \frac{c^2}{\omega_k^2 - \kappa_0 c^2 k^2} \left\{ \kappa_1 \left(k - \frac{2\pi}{a} \right)^2 E_{-1} + \kappa_{-1} \left(k + \frac{2\pi}{a} \right)^2 E_1 \right\}$$
(1.14)

Para m = -1,

$$E_{-1} \approx \frac{c^2}{\omega_k^2 - \kappa_0 c^2 (k - 2\pi/a)^2} \left\{ \kappa_1 \left(k - \frac{4\pi}{a} \right)^2 E_{-2} + \kappa_{-1} k^2 E_0 \right\}$$
(1.15)

Por esta razão, se $k \approx |k - 2\pi/a|$ (ou seja, $k \approx \pi/a$), e se $\omega_k^2 \approx \kappa_0 c^2 k^2$, então E_0 e E_{-1} são dominantes na expansão (1.11). Neste caso podemos ignorar todos os outros termos e obter as seguintes equações acopladas:

$$\left(\omega_k^2 - \kappa_0 c^2 k^2\right) E_0 - \kappa_1 c^2 \left(k - \frac{2\pi}{a}\right)^2 E_{-1} = 0$$
(1.16)

$$-\kappa_{-1}c^{2}k^{2}E_{0} + \left\{\omega_{k}^{2} - \kappa_{0}c^{2}\left(k - \frac{2\pi}{a}\right)^{2}\right\}E_{-1} = 0$$
(1.17)

Figura 1.3: Relação de dispersão para um cristal fotônico 1D (linhas sólidas). O limite da primeira zona de Brillouin é denotado pelas duas linhas verticais. As linhas de dispersão para o material uniforme é representado pelas linhas pontilhadas. Quando duas linhas de dispersão se cruzam, elas se repelem mutuamente e um band gap fotônico surge.

estas equações lineares possuem uma solução não trivial quando o determinante dos coeficientes é nulo:

$$\begin{bmatrix} \omega_k^2 - \kappa_0 c^2 k^2 & -\kappa_1 c^2 \left(k - \frac{2\pi}{a}\right)^2 \\ -\kappa_{-1} c^2 k^2 & \omega_k^2 - \kappa_0 c^2 \left(k - \frac{2\pi}{a}\right)^2 \end{bmatrix} = 0$$

introduzindo a variável $h = k - \pi/a$, as soluções são dadas por:

$$\omega_{\pm} \approx \frac{\pi c}{a} \sqrt{\kappa_0 \pm |\kappa_1|} \pm \frac{ac}{\pi |\kappa_1|} \left(\kappa_0^2 - \frac{|\kappa_1|^2}{2}\right) h^2 \tag{1.18}$$

com $h \ll \pi/a$. Temos portanto que não existem modos no intervalo

$$\frac{\pi c}{a}\sqrt{\kappa_0 - |\kappa_1|} < \omega < \frac{\pi c}{a}\sqrt{\kappa_0 + |\kappa_1|} \tag{1.19}$$

e este gap desaparece quando $\kappa_1 = 0$, ou seja, a única componente de Fourier considerada não é oscilatória. A relação de dispersão de um cristal fotônico unidimensional para um caso geral é mostrado na fig. 1.3. Para um material uniforme, a relação de dispersão é dada por $\omega = vk$ (linhas descontínuas). Este comportamento é observado no começo da banda, onde o comprimento de onda é suficientemente grande para perceber a periodicidade da função dielétrica. O cruzamento de duas destas linhas de dispersão sinaliza a formação de um band gap.

Capítulo 2

Multicamadas Aleatórias

Uma das principais propriedades do cristal fotônico e sua alta capacidade de reflexão. Nos primórdios da ciência, o principal dispositivo utilizado para reflexão de luz era o espelho de metal, que apresenta capacidade de reflexão para uma vasta faixa de freqüência mas possui a desvantagem de apresentar absorção, principalmente na região do visível. Um filme de multicamadas dielétricas pode apresentar baixíssimo grau de absorção, sendo portanto vastamente utilizado em equipamentos ópticos[32]. Neste contexto, torna-se interessante investigar as propriedades do PBG a fim de se controlar, dentre outras coisas, sua largura e posição no espectro.

A largura de um PBG em uma estrutura binária periódica de multicamadas depende do contraste dos índices de refração (diferença entre os índices de refração), o que limita muito sua aplicação à capacidade de se obter pares de materiais de alto contraste. Uma maneira eficiente de alargar o PBG de uma estrutura de multicamadas é introduzindo desordem na sua distribuição de camadas.

O fenômeno da localização de Anderson foi originalmente descrito para elétrons não interagentes em sistemas atômicos cujo potencial de ligação apresentava uma distribuição aleatória. O efeito resultante da interferência entre múltiplos espalhamentos do elétron pelos defeitos aleatórios nos potenciais modifica as auto-funções de um estado estendido (onda de Bloch) para um estado exponencialmente localizado [21]. Por ser um efeito tipicamente ondulatório, as predições feitas para o caso eletrônico são aplicáveis à ondas eletromagnéticas.

Neste capítulo mostramos os resultados de um estudo teórico sobre algumas leis de escala para a transmissão através de um sistema binário de multicamadas dielétricas aleatoriamente distribuídas. Este tipo de sistema físico já foi estudado por outros pesquisadores [33, 34] e tem se mostrado muito versátil, além de ser de fácil fabricação.

2.1 Método da Matriz de Transferência

Uma maneira simples de se obter numericamente a intensidade dos campos elétrico e magnético nas interfaces de um filme estratificado é calculando a chamada Matriz de Transferência [35].

Seja uma onda eletromagnética plana com dependência temporal harmônica. Chamamos de modo TE (transverse electric) o caso de uma polarização linear tal que o campo elétrico seja perpendicular ao plano de incidência. Para o caso do campo magnético perpendicular ao plano de incidência, chamamos este caso de modo TM (transverse magnetic). Para qualquer polarização arbitrária podemos separar a onda em duas, sendo uma delas do tipo TE e a outra do tipo TM e trata-las de maneira independente, já que as condições de contorno nas interfaces são independentes uma da outra. Além do mais, para um meio ausente de cargas livres e densidade de corrente nula, as equações de Maxwell não sofrem mudança quando $\mathbf{E} \in \mathbf{H}$, e simultaneamente $\epsilon e -\mu$ são permutados. Assim, qualquer resultado relacionado ao

Figura 2.1: Representação esquemática da onda eletromagnética incidente.

modo TM pode ser imediatamente deduzido para o modo TE através desta permuta, sendo suficiente portanto estudar em detalhes apenas o modo TE.

Tomamos o plano de incidência como sendo o plano yz e sendo z a direção de estratificação (figura 2.1). Para uma onda em modo TE, $E_y = E_z = 0$ e as equações de Maxwell são reduzidas para o seguinte conjunto de equações escalares [assumindo uma dependência temporal do tipo exp $(-i\omega t)$]:

$$\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} + \frac{i\epsilon\omega}{c}E_x = 0 \quad (2.1a) \qquad \qquad \frac{i\omega\mu}{c}H_x = 0 \quad (2.2a)$$

$$\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} = 0 \quad (2.1b) \qquad \qquad \frac{\partial E_x}{\partial z} - \frac{i\omega\mu}{c}H_y = 0 \quad (2.2b)$$
$$\frac{\partial H_x}{\partial E_x} - \frac{i\omega\mu}{c}H_y = 0 \quad (2.2b)$$

$$\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = 0 \quad (2.1c) \qquad \qquad \frac{\partial E_x}{\partial y} + \frac{i\omega\mu}{c}H_z = 0 \quad (2.2c)$$

Estas equações mostram que H_y, H_z e E_x são funções apenas de y e z. Eliminando H_y e H_z entre (2.1a), (2.2b) e (2.2c) obtemos:

$$\frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} + n^2 k_0^2 E_x = \frac{d(\log \mu)}{dz} \frac{\partial E_x}{\partial z}$$
(2.3)

Instituto de Física - UFAL

onde

$$n^2 = \epsilon \mu, \qquad \qquad k_0 = \frac{\omega}{c} = \frac{2\pi}{\lambda_0}$$
 (2.4)

Para resolver (2.3) utilizamos o método da separação de variáveis, ou seja, tomemos uma função que é o produto de duas outras, uma dependente apenas de ye a outra dependente apenas de z:

$$E_x(y,z) = Y(y)U(z) \tag{2.5}$$

substituindo na eq. (2.3) obtemos:

$$\frac{1}{Y}\frac{d^2Y}{dy^2} = -\frac{1}{U}\frac{d^2U}{dz^2} - n^2k_0^2 + \frac{d(\log\mu)}{d_z}\frac{1}{U}\frac{dU}{dz}$$
(2.6)

Temos que o termo da esquerda é função apenas de y, enquanto que o da direita depende apenas de z, de forma que podemos igualar cada lado de (2.6) à uma constante $(-K^2)$.

$$\frac{1}{Y}\frac{d^2Y}{dy^2} = -K^2 \tag{2.7}$$

$$\frac{d^2U}{dz^2} - \frac{d(\log\mu)}{dz}\frac{dU}{dz} + n^2k_0^2U = K^2U$$
(2.8)

A solução para (2.7) será:

$$Y = Ce^{ik_0\alpha y} \tag{2.9}$$

onde foi feita a substituição

$$K^2 = k_0^2 \alpha^2$$
 (2.10)

Por consequência, E_x é dado por:

$$E_x = U(z)e^{i(k_0\alpha y - \omega t)} \tag{2.11}$$

Das eq. (2.2b) e (2.2c) vemos que H_y e H_z são dadas por:

$$H_y = V(z)e^{i(k_0\alpha y - \omega t)} \tag{2.12}$$

$$H_z = W(z)e^{i(k_0\alpha y - \omega t)} \tag{2.13}$$

De acordo com (2.1a), (2.2b), (2.2c), as amplitudes $U, V \in W$ são relacionadas pelas equações:

$$\frac{dV}{dz} = ik_0[\alpha W + \epsilon U]$$
(2.14a)

$$\frac{dU}{dz} = ik_0\mu V \tag{2.14b}$$

$$\alpha U + \mu W = 0 \tag{2.14c}$$

eliminando W da eq. (2.14a) através de (2.14c) obtemos, juntamente com (2.14b), o sistema de equações diferenciais para $U \in V$:

$$\frac{dU}{dz} = ik_0 \mu V$$

$$\frac{dV}{dz} = ik_0 \left(\epsilon - \frac{\alpha^2}{\mu}\right) U$$
(2.15)

desacoplando as equações obtemos finalmente para U e V:

$$\frac{d^2U}{dz^2} - \frac{d(\log\mu)}{dz}\frac{U}{z} + k_0^2(n^2 - \alpha^2)U = 0$$
(2.16)

$$\frac{d^2V}{dz^2} - \frac{d\left[\log\left(\varepsilon - \frac{\alpha^2}{\mu}\right)\right]}{dz}\frac{dV}{dz} + k_0^2(n^2 - \alpha^2)V = 0$$
(2.17)

Figura 2.2: Representação de superfícies co-fasais para uma onda plana.

As funções U(z), V(z) e W(z) em geral são complexas.

A superfície de amplitude constante de E_x é dada por |U(z)| = cte., enquanto que a superfície de fase constante (co-fasal) é obtida pela equação:

$$\varphi(z) + k_0 \alpha y = cte.$$

onde $\varphi(z)$ é a fase de U. Os dois conjuntos de superfícies em geral não coincidem (onda inomogênea). Para um pequeno deslocamento (dy, dz) ao longo da superfície co-fasal temos $\phi'(z)dz + k_0\alpha dy = 0$ (ver fig. 2.1). Se θ representar o angulo entre a normal à superfície co-fasal e a direção OZ temos:

$$\tan \theta = -\frac{dz}{dy} = \frac{k_0 \alpha}{\phi'(z)} \tag{2.18}$$

Se considerarmos que a onda é plana e homogênea, podemos adotar θ como o angulo

de incidência e teremos:

$$\phi(z) = k_0 n z \cos \theta, \qquad \alpha = n \sin \theta \qquad (2.19)$$

onde temos $\alpha = cte$. como uma conseqüência da imposição de (2.10), o que remete à *Lei de Snell da refração* para meios estratificados. Esta condição também será aplicada ao caso apresentado no capítulo 5, onde a constante K representará a componente do vetor de onda k ao londo do eixo perpendicular à direção de estratificação.

Sendo as funções U(z) e V(z) soluções de uma equação diferencial linear de segunda ordem, podemos expressa-las como uma combinação linear de duas soluções particulares (U_1 , U_2 e V_1 , V_2). Estas soluções particulares são acopladas pelas equações (2.15):

destas equações podemos escrever:

$$V_1 U_2' - U_1' V_2 = 0, \qquad U_1 V_2' - V_1' U_2 = 0 \longrightarrow \frac{d}{dz} (U_1 V_2 - U_2 V_1) = 0$$

.

esta relação implica que o determinante

$$D = \begin{vmatrix} U_1 & V_1 \\ U_2 & V_2 \end{vmatrix}$$
(2.21)

associado com duas soluções particulares quaisquer de (2.15) é constante, isto é, que

D é uma invariante de nosso sistema de equações.

Para nosso propósito, escolhemos como soluções particulares:

$$U_{1} = f(z) \quad U_{2} = F(z) \\ V_{1} = g(z) \quad V_{2} = G(z)$$
(2.22)

tal que

$$f(0) = G(0) = 0 \ e \ F(0) = g(0) = 1.$$
(2.23)

、

Podemos então expressar $U(0) = U_0 \in V(0) = V_0$ na forma

$$\left.\begin{array}{l}
U = FU_0 + fV_0 \\
V = GU_0 + gV_0
\end{array}\right\}$$
(2.24)

que em notação matricial pode ser escrito como

$$Q = NQ_0 \tag{2.25}$$

onde

$$Q = \begin{bmatrix} U(z) \\ V(z) \end{bmatrix} \qquad Q_0 = \begin{bmatrix} U_0 \\ V_0 \end{bmatrix} \qquad N = \begin{bmatrix} F(z) & f(z) \\ G(z) & g(z) \end{bmatrix}$$
(2.26)

Por conta da relação D = c.t.e., o determinante da matriz N é uma constante. O valor desta constante pode ser imediatamente encontrado fazendo z = 0:

$$|N| = Fg - fG = 1 \tag{2.27}$$

Normalmente é mais conveniente expressar $U_0 \in V_0$ como funções de $U(z) \in V(z)$.
Resolvendo para $U_0 \in V_0$ obtemos:

$$Q_0 = MQ \tag{2.28}$$

onde

$$M = \begin{bmatrix} g(z) & -f(z) \\ -G(z) & F(z) \end{bmatrix}$$
(2.29)

Esta matriz também é unimodular (|M| = 1).

O significado de M é claro: ela relaciona as componentes x e y do campo elétrico (ou magnético) no plano z = 0 com as componentes de um plano arbitrário z = cte.. Vemos que o conhecimento de U e V é suficiente para descrever o campo completamente. Assim, para determinar a propagação de uma onda plana monocromática através em um meio estratificado, este meio precisa ser especificado por uma matriz 2×2 unimodular M. Por esta razão, M é chamada matriz característica do meio estratificado.

Considerando o caso mais simples de um meio dielétrico homogêneo, onde ε , $\mu \in n = \sqrt{\epsilon \mu}$ são constantes. Para um onda TE, as equações (2.16) e (2.17) tomam a forma:

$$\left. \frac{d^2 U}{dz^2} + (k_0^2 n^2 \cos^2 \theta) U = 0 \\
\frac{d^2 V}{dz^2} + (k_0^2 n^2 \cos^2 \theta) V = 0 \right\}$$
(2.30)

onde θ é o angulo entre a direção de propagação da onda e o eixo z. A solução destas equações, sujeita à relação (2.15), são dadas por

$$U(z) = A\cos(k_0 n z \cos \theta) + B\sin(k_0 n z \cos \theta)$$

$$V(z) = \frac{1}{i} \sqrt{\frac{\varepsilon}{\mu}} \cos \theta B \cos(k_0 n z \cos \theta) - A\sin(k_0 n z \cos \theta)$$
(2.31)

As soluções particulares (2.22) que satisfazem às condições de contorno (2.23) são:

$$U_{1} = f(z) = \frac{i}{\cos\theta} \sqrt{\frac{\mu}{\varepsilon}} \sin(k_{0}nz\cos\theta)$$

$$V_{1} = g(z) = \cos(k_{0}nz\cos\theta)$$

$$U_{2} = F(z) = \cos(k_{0}nz\cos\theta)$$

$$V_{2} = G(z) = i\sqrt{\frac{\varepsilon}{\mu}}\cos\theta\sin(k_{0}nz\cos\theta)$$

$$(2.32)$$

chamando

$$p = \sqrt{\frac{\varepsilon}{\mu}} \cos \theta \tag{2.33}$$

a matrix característica assume a forma

$$M(z) = \begin{bmatrix} \cos(k_0 n z \cos \theta) & -\frac{i}{p} \sin(k_0 n z \cos \theta) \\ -ip \sin(k_0 n z \cos \theta) & \cos(k_0 n z \cos \theta) \end{bmatrix}$$
(2.34)

Para uma onda TM, as equações são mantidas, com a mudança de p por:

$$q = \sqrt{\frac{\mu}{\varepsilon}} \cos \theta \tag{2.35}$$

Na interface de dois meios dielétricos, os campos apresentam componentes contínuas, de forma que para um filme formado por N camadas dielétricas homogêneas, a relação entre os campos elétrico e magnético na primeira interface com os da última interface pode ser escrita pelo produtório das matrizes de características:

$$Q_0 = \underbrace{M_1 \cdot M_2 \cdot M_3 \cdots M_{N-1} \cdot M_N}_{M} \cdot Q \tag{2.36}$$

onde M_i representa a matriz característica (2.34) da *i-ésima* camada.

2.1.1 Coeficientes de transmissão e reflexão

Considerando uma onda plana incidindo sobre um meio estratificado que se estende desde z = 0 para $z = z_1$ e que é rodeado em cada lado por um meio semi-infinito e homogeneo. Seja A, R e T as amplitudes (provavelmente complexas) do vetor campo elétrico da onda incidente, refletida e transmitida. Seja ainda ε_1 , μ_1 e ε_l , μ_l as constantes dielétrica e a permeabilidade magnética do primeiro e do último meios e θ_1 e θ_l os ângulos entre a direção de propagação das ondas incidente e transmitida com a direção z (direção de estratificação).

Da condição de contorno que exige a continuidade da componente tangencial dos campos $\vec{E} \in \vec{H}$ na interface de dois meios de propagação diferentes e da relação:

$$\vec{H} = \sqrt{\frac{\varepsilon}{\mu}} \hat{u} \times \vec{E} \tag{2.37}$$

onde \hat{u} é um versor que aponta para a direção de propagação da onda, obtemos a seguinte relação para uma onda TE.

$$U_0 = A + R \qquad U(z_l) = T V_0 = p_1(A - R) \qquad V(z_l) = p_l T$$
(2.38)

onde

$$p_{1l} = \sqrt{\frac{\varepsilon_{1l}}{\mu_{1l}}} \cos \theta_{1l} \tag{2.39}$$

As quatro quantidades dadas por (2.38) são conectadas pela relação (2.28), logo

$$\begin{array}{c}
A + R = (m'_{11} + m'_{12}p_l)T \\
p_1(A - R) = (m'_{21} + m'_{22}p_l)T
\end{array}$$
(2.40)

onde m'_{ij} são os elementos da matriz característica do meio, computada para $z = z_1$. De (2.40) obtemos os coeficientes de reflexão e transmissão do filme:

$$r = \frac{R}{A} = \frac{(m'_{11} + m'_{12}p_l)p_1 - (m'_{21} + m'_{22}p_l)}{(m'_{11} + m'_{12}p_l)p_1 + (m'_{21} + m'_{22}p_l)}$$
(2.41)

$$t = \frac{T}{A} = \frac{2p_1}{(m'_{11} + m'_{12}p_l)p_1 + (m'_{21} + m'_{22}p_l)}$$
(2.42)

Em termos de $r \in t$, a refletividade e transmissividade são

$$R = |r|^2, T = \frac{p_l}{p_1} |t|^2 (2.43)$$

As equações correspondentes para uma onda TM são imediatamente obtidas de (2.41)-(2.43) substituindo as quantidades $p_1 \in p_l$ por

$$q_{1l} = \sqrt{\frac{\mu_{1l}}{\varepsilon_{1l}}} \cos \theta_{1l} \tag{2.44}$$

neste caso, $r \in t$ passam a ser razões da amplitude do campo magnético, e não do elétrico.

2.2 Resultados

Consideramos um filme binário aleatório composto por N camadas dielétricas ideais, com índices de refração $n_A = 1.45$ e $n_B = 2.5$, apesar de o caráter qualitativo que será explorado permanecer o mesmo para outros pares (n_A, n_B) . A *i-ésima* camada da seqüência tem a mesma probabilidade de ser do tipo A ou B. A estrutura dielétrica resultante está submersa pelo vácuo, e a espessura das camadas é tomada de forma a satisfazer a condição de Bragg, isto é, ambos os tipos de ca-

Figura 2.3: Representação de um sistema binário de multicamadas que apresenta desordena na ordem posicional das camadas.

madas dielétricas apresentam o mesmo caminho óptico $n_A d_A = n_B d_B = \lambda_0$, onde a freqüência característica $\nu_0 = c/\lambda_0$ corresponde ao modo cujo comprimento de onda no vácuo é igual ao caminho óptico das camadas.

Uma visão geral da influência da desordem pode ser observada comparando o espectro de transmissão de uma sequência de camadas $A \in B$ alternadas com o de uma seqüência de multicamadas aleatórias, como mostrado na Fig. 2.2 para uma estrutura com $N = 10^2$ camadas. Para o caso periódico, o espectro de transmissão apresenta uma seqüência de bandas de modos transmissíveis e modos proibidos (band gap fotônico). As bandas de modos transmissíveis são centradas em freqüências na qual o caminho óptico de cada camada é um múltiplo inteiro de meio comprimento de onda no vácuo, isto é, a mudança de fase gerada em cada camada é dada por $\delta = m\pi$, com m inteiro. A estrutura de multicamadas é completamente transparente para estes modos. As bandas de modos proibidos são centradas nas freqüências cujo caminho óptico das camadas apresenta-se com o quarto do comprimento de onda que a luz incidente possui quando propagando no vácuo (mudança de fase $\delta = (m + 1/2)\pi$). A largura do gap fotônico depende da diferença entre os

Figura 2.4: Espectro de transmissão de um filme binário periódico (a) e aleatório (b) com $N = 10^2$ camadas. Para a estrutura aleatória foram utilizadas 10^2 diferentes realizações. A desordem na posição das camadas apresenta influências distintas para as regiões de freqüência correspondente à banda de modos transmissíveis e a de modos proibidos. O *inset* mostra em detalhes o pico de transmissão induzido pela desordem no centro da região de freqüência correspondente ao gap fotônico.

índices de refração $n_A \in n_B$.

O espectro de transmissão média em uma estrutura desordenada, calculada sobre 10^2 amostras de desordem, é mostrado na figura 2.2(b). A desordem apresenta efeitos diferentes nas regiões de freqüência correspondente à banda de transmissão e ao gap. Primeiramente nota-se que o pico central das bandas de transmissão não é afetado pela desordem, o que é esperado já que a matriz de transferência de cada camada transforma-se em uma matriz identidade I nestes modos (na verdade temos $\pm I$). Além disso, a largura da banda de transmissão é reduzido. Na região de gap fotônico, a desordem induz o surgimento de alguns poucos modos, relacionados com estados de nacklace[17, 18], resultantes da hibridização de estados degenerados

Figura 2.5: (a) Média espectral da transmissão versus o número de camadas N. (b) Comprimento de localização na vizinhança do modo de meio comprimento de onda. A transmissão média decai com $1/N^{1/2}$ e o comprimento de localização decai quadraticamente à medida que se aproxima do modo ressonante. A estimativa do comprimento de localização foi obtida considerando-se uma estrutura finita com $N = 10^4$ camadas e a média foi calculada sobre 10^3 seqüências aleatórias distintas. A saturação do comprimento de localização quando muito próximo do modo ressonante é um efeito do tamanho finito do sistema.

localizados em regiões distintas do filme. Apesar destes modos se tornarem raros com o aumento do número de camadas, eles dominam a transmissão média nesta região de freqüência, de forma que o espectro de transmissão média apresenta um pequeno pico no centro do gap fotônico.

A insensibilidade do modo de total transmissividade com o arranjo das camadas remete à violação da localização de Anderson que ocorre no modelo eletrônico de dímeros aleatórios[52, 53]. Este modelo também apresenta um modo ressonante no qual o dímero se torna transparente. Uma assinatura típica deste tipo de ressonância é o fato de o comprimento de localização ξ divergir com $|E - E_0|^{-2}$. Conseqüentimente a faixa de energias dos estados efetivamente estendidos com $\xi > N$ deve decrescer com $N^{-1/2}$. Verificamos estas leis de escala para os modos na vizinhança do modo de quarto comprimento de onda. Como uma medida do comprimento de localização ξ , consideramos o inverso do expoente de Lyapunov $[\xi = 1/\Lambda = -\lim_{N\to\infty} (N/\ln T)]$. Calculamos também a média espectral da transmissão $\langle T \rangle_{\omega} = (1/\Delta\omega) \int_{w_o}^{w_o+\Delta\omega} \langle T(\omega) \rangle d\omega$ para a região de freqüência correspondente à banda de transmissão para o caso periódico. Na fig. 2.5 temos os nossos resultados para estas quantidades. Assim como o previsto acima, a média da transmissão decai com $N^{-1/2}$ e o comprimento de localização diverge quadraticamente à medida que se aproxima do modo ressonante.

No modo central da região de band gap nota-se que a matriz de transferência de ambos os tipos de camadas apresenta elementos não nulos fora da diagonal. Entretanto, estes elementos não diagonais são aleatoriamente distribuídos. Este cenário é análogo ao encontrado no hamiltoniano do modelo eletrônico tight-binding unidimensional de Anderson com termos de hopping aleatórios [54, 55]. O estado central à banda de energias deste modelo tem um comprimento de localização infinito. Apesar disto, a média na desordem da transmissão se aproxima de zero à medida que o comprimento do sistema aumenta. Baseado no teorema do limite central, o logaritmo da transmissão no modo ressonante deve apresentar uma distribuição Gaussiana no regime de N grande, cujo desvio quadrático médio cresce com $N^{1/2}$, como mostrado na referência [54]. Seguindo esta distribuição, o valor da média geométrica $[\exp(<\ln(T) >)]$ e da harmônica $(< 1/T >^{-1})$ da transmissão deve comportar-se como $\exp(-\alpha\sqrt{L})$, enquanto que o valor da média aritmética (< T >) deve obedecer à uma lei de potência $N^{1/2}$. À medida que se aproxima do centro da banda, a localização diverge logaritmicamente [55], resultando que a faixa de energia dos

Figura 2.6: Dependência espacial da média geométrica (exp $< \ln T >$), harmônica ($< 1/T >^{-1}$) e aritmética (< T >) da transmissão na freqüência da ressonância de 1/4 de comprimento de onda. Tanto a média geométrica quanto a harmônica escalam como uma exponencial alongada, enquanto que a média aritmética exibe decaimento mais lento tipo lei de potência. A média foi tomada sobre 10⁴ seqüências aleatórias distintas.

estados efetivamente estendidos devem ser estreita, escalando com uma exponencial alongada.

Verificamos o comportamento de escala acima citado no modo de 1/4 de comprimento de onda. Na fig. 2.6 temos a dependência espacial da média geométrica, harmônica e aritmética da transmissão. Tanto a média geométrica como a harmônica apresentam uma escala do tipo exponencial alongada, enquanto que a média aritmética exibe um decaimento mais lento tipo lei de potência. Na fig 2.7 mostramos a distribuição de probabilidade do logaritmo da transmissão no modo de 1/4 de comprimento de onda sobre 10^4 diferentes seqüências aleatórias com 10^4 camadas. A distribuição numericamente obtida apresenta um bom ajuste com uma curva Gaussina,

36

Figura 2.7: Função distribuição de probabilidade do logaritmo da transmissão na freqüência de ressonância de 1/4 de comprimento de onda. A distribuição obtida numericamente tem bom ajuste com uma curva Gaussiana (linha tracejada), corroborando portanto com a provisão do teorema do limite central. Os dados são os mesmos utilizados na fig 2.3 para $N = 10^4$ camadas.

corroborando com as previsões do teorema do limite central. É importante mencionar que a configuração de desordem que leva à uma transmissão elevada ocorre com maior probabilidade que a distribuição que leva à uma transmissão baixa. Isto é de certa forma um aspecto contra-intuitivo, uma vez que se espera da desordem um favorecimento da localização. Na verdade, neste valor de freqüência, o sistema tem uma ordem parcial escondida. Pares de camadas vizinhas do mesmo tipo são transparentes. Por conta disso, o tamanho efetivo do sistema pode ser renormalizado dizimando tais pares até um nível no qual as camadas restantes formam uma seqüência periódica alternada [18]. A probabilidade de tal dizimação proceder até altas ordens é alta, resultando portanto em um máximo na distribuição de desordem para alta transmissão.

A média espectral da transmissão na região de freqüência próximo ao modo

Figura 2.8: (a) Média espectral da transmissão na região de freqüência próxima do modo de 1/4 de comprimento de onda como uma função do número de camadas. Vemos um decaimento assimptótico do tipo exponencial alongada com o aumento do número de camadas. (b) A média na desordem do comprimento de localização na vizinhança da ressonância de 1/4 de comprimento de onda apresenta divergência logarítmica lenta. A média foi tomada sobre 10⁴ seqüências aleatórias. O comprimento de localização em (b) foi estimado para uma estrutura com 5 × 10³ camadas.

de 1/4 de comprimento de onda é mostrado na fig. 2.8(a). Em contraste com a lei de potência obtida na vizinhança do modo de 1/2 de comprimento de onda, encontramos agora que a média espectral da transmissão exibe um decaimento mais rápido com o aumento do número de camadas, do tipo exponencial alongada. Esta tendencia é consistente com a lenta divergência logarítmica do comprimento de localização quando próximo deste modo ressonante, como mostra a fig. 2.8(b). Todos os comportamentos de escala relatados na ressonância de 1/4 de comprimento de onda são consistentes com os obtidos para o modelo eletrônico *tight-binding* de hopping aleatório e deve se manter para modelos unidimensional gerais com desordem apenas nos termos fora da diagonal.

A analise acima mostrou que a desordem exerce influência oposta no compor-

Figura 2.9: Média espectral da transmissão no entorno das ressonâncias de 1/2 (a) e 1/4 (b) de comprimento de onda como função do grau de desordem. A desordem exerce tendencias opostas no comportamento da transmissão próximo de cada ressonância. Ao redor da ressonância e 1/2 de comprimento de onda, a localização de Anderson é o efeito predominante e a transmissão decai com o aumento da desordem. Por outro lado, próximo da ressonância de 1/4 de comprimento de onda, a desordem induz o surgimento de estados dentro da banda de gap, o que promove uma pequena transmissão nesta região de freqüência. Dados obtidos de 5×10^3 seqüências aleatórias distintas com 10^2 camadas cada.

tamento da transmissão próximo dos modos de 1/2 e 1/4 de comprimento de onda. Próximo da condição de 1/2 comprimento de onda, isto é, na banda de transmissão da seqüência periódica, o principal efeito da desordem é promover a localização exponencial dos modos, com exceção da ressonância. Por conta disso, a média espectral da transmissão é reduzida pela desordem. Por outro lado, dentro da banda de gap fotônico, a desordem promove o surgimento de estados que apresentem uma pequena mas finita transmissão em sistemas finitos.

A fim de mostrar explicitamente estas tendências opostas, computamos a média espectral da transmissão na região em volta das ressonâncias de 1/2 e 1/4de comprimento de onda como uma função do grau de desordem. Iniciamos com uma seqüência periódica de camadas alternadas $A \in B$. Então, o tipo de camada de cada sítio desta seqüência é trocado com uma probabilidade q. Para q = 0obtemos uma seqüência completamente periódica, enquanto que para o limite de q = 1/2 teremos a seqüência desordenada e descorrelacionada. Nossos resultados são mostrados na figura 2.6 para $N = 10^2$ camadas, com valores médios obtidos sobre 5×10^3 configurações de desordem e dentro da região de freqüência correspondente à banda de transmissão (a) e à de reflexão (b). Nota-se que a transmissão média no entorno do modo de 1/2 de comprimento de onda decai com o aumento do grua de desordem, uma vez que a localização de Anderson é o efeito predominante. A média espetral da transmissão em torno da ressonância de 1/4 de comprimento de onda descreve uma tendencia oposta, crescendo com o aumento do grau de desordem devido à emersão de estados dentro do gap. A média na transmissão é pequena devido à baixa probabilidade de ocorrência de estados de *necklace*.

Temos portanto que o emprego de uma distribuição desordenada em um filme binário de N camadas que obedecem à condição de Bragg cria um alargamento da região do gap fotônico, que aumenta com o número de camadas N e é centrada pelo modo de quarto de onda. Apesar deste alargamento, a desordem faz surgir alguns poucos modos de baixa transmissividade nesta região, de forma que a média espectral da transmissão aumenta ligeiramente com o grau de desordem nesta região.

Calculando o logaritmo da transmissão do modo ressonante de quarto de comprimento de onda para várias realizações de desordem, observamos que esta quantidade apresenta uma distribuição Gaussiana, o que reflete uma ordem parcial escondida que pode ser revelada pela dizimação dos pares de camadas vizinhas similares. Nesta ressonância, as médias geométrica e harmônica da transmissão escalam como uma exponencial alongada de N, enquanto que a média aritmética apresenta um decaimento mais lento, tipo lei de potência, proporcional à $N^{-1/2}$. Além disso, a média espectral da transmissão no entorno desta ressonância também decai com o número total de camadas como uma exponencial alongada, corroborando com a lenta divergência logaritmica do comprimento de localização. As leis de escala para esta ressonância são similares às obtidas para o modelo de Anderson com hopping aleatório.

A pequena região de modos transmissíveis é centrada pelo modo de meio comprimento de onda. Este modo é completamente transparente e insensível à desordem. A largura desta banda decai com o grau de desordem e com o número de camadas, de forma que a média espectral da transmissão escala com $N^{1/2}$. Além disto, o comprimento de localização diverge quadraticamente à medida que se aproxima da freqüência de ressonância. Estas leis de escala são as mesmas encontradas no modelo tight-binding de Anderson com dímeros aleatórios para estados eletrônicos.

Capítulo 3

Multicamadas com Modulação Aperiódica

Seqüências quasi-periódicas atraem o fascínio dos cientistas por apresentarem características intermediárias entre o caso periódico e o desordenado. Como foi discutido no capítulo introdutório, os auto-estados de um elétron em uma cadeia atômica periódica se comportam como ondas de Bloch, enquanto que para uma cadeia desordenada os elétrons se apresentam confinados à uma região finita da cadeia. A utilização de uma distribuição quasi-periódica pode, a princípio, cobrir uma transição entre estes dois regimes, e por isso tem sido muito empregada nos diversos problemas de localização.

Por não apresentar simetria translacional, uma seqüência quasi-periódica se assemelha a uma sequêncioa desordenada. No entanto, a primeira é gerada por uma regra determinística, onde temos como exemplo as distribuições de Thue-Morse, Fibonacci e as com modulação aperiódica, esta última sendo escolhida como tema de estudo a ser apresentado neste capítulo. No modelo de Anderson para elétrons não interagentes, a utilização de potenciais modulados aperiodicamente tem produzido resultados fascinantes. No final dos anos 70, M. A. Azbel [36], utilizando o modelo de Kromig-Penney. mostrou que o espectro de energias de uma partícula em um potencial 1D periódico, cujo período é incomensurável, é do tipo *devil's stair*. Utilizando trajetórias no espaço de fase, mostrou-se que existem estados localizados e estendidos separados por um *mobility edge*, resultado que viola a teoria de escala de Anderson. Baseado nos trabalhos de Azbel[36] e Aubry[37], J. B. Sokoloff [38] estudou a localização de elétrons no modelo *tight-binding* contendo um potencial de modulação periódica incomensurável, no qual a equação de Schrödinger é dada por

$$f_{n+1} + f_{n-1} + V_0(\cos qn)f_n = Ef_n \tag{3.1}$$

onde f_n é o coeficiente de expansão para a função de onda na aproximação tightbinding $[\psi(x) = \sum_n f_n \phi(x - na)]$ e ϕ representa um orbital atômico. A incomensurabilidade é obtida ao assumirmos que q é um número irracional. Estudos numéricos da convergência da fração contínua resultante para a auto-energia indicou que em uma dimensão existe uma transição em um valor crítico de V_0 de todos os estados localizados para todos os estados estendidos. Estudos em duas e três dimensões mostraram que existe uma faixa intermediária de valores de V_0 no qual pode existir mobilidy edge separando estados estendidos e localizados. Um estudo posterior de Soukoulis e Economou [39], utilizando a densidade de estados, mostrou que com a inclusão de incomensurabilidade no potencial, até mesmo um sistema unidimensional pode apresentar mobilidy edge. Em 1988 M. Griniasty e S. Fishman estudaram o comprimento de localização em um modelo tight-biding onde o potencial modulado periodicamente, cujo período obedece uma lei de potência, ou seja

$$\epsilon_n = V \cos(\pi a |n|^{\nu}) \tag{3.2}$$

onde α é um número irracional. Foi mostrado que para $\nu \ge 2$ todos os estados são localizados e o sistema se comporta de maneira pseudo-aleatória, enquanto que para $0 < \nu \le 1$ existem estados estendidos. No regime intermediário de $1 < \nu < 2$ foram encontradas discordâncias entre os resultados previstos pelo método perturbativo e os resultados numéricos, tendo o autor sugerido uma maior investigação do problema.

Outros estudos utilizando o potencial 3.2 [40, 41] mostraram a existência de estados localizados e estendidos controlados pela largura da desordem e pelos valores de ν , resumidamente descrito abaixo:

- Quando 0 < ν < 1 e V < 2: Estados estendidos em -2+V < E < 2-V Estados localizados em 2-V < E < 2+V e -2-V < E < -2+V
- Quando $0 < \nu < 1$
eV > 2: Todos os estados são localizados
- Quando $\nu=1$ eV<2:Todos os estados são estendidos
- Quando $\nu = 1$ e V > 2: Todos os estados são localizados
- Quando $1 < \nu < 2$: Todos os estados são localizados, mas o coeficiente de Lyapunov se aproxima de zero no centro da banda
- Quando ν > 2: O sistema se comporta como no caso desordenado, sendo portanto todos os estados exponencialmente localizados.

Neste capítulo apresentamos o resultado de uma análise da influência de

uma distribuição binária de camadas que obedece uma lei baseada na eq.3.2. Os parâmetros de construção das camadas seguem sendo os mesmos utilizados no capítulo anterior, ou seja, vamos considerar a estrutura de multicamadas composta por dois tipos de materiais dielétricos não-absorventes e não-dispersivos cujas espessuras satisfazem à condição $n_A d_a = n_B d_B$.

3.1 Distribuição Binária Aperiódica

A aperiodicidade foi aplicada baseando-se no procedimento descrito em [41]. A seqüência de índices de refração é tomada de acordo com a regra:

$$V_j = \cos(\alpha \pi j^{\nu}) \to n_j = \begin{cases} n_A \ se \ V_j \leqslant 0\\ n_B \ se \ V_j > 0 \end{cases}$$
(3.3)

A regra acima utiliza uma função senoidal cuja fase ϕ varia como uma lei de potência, $\phi \propto j^{\nu}$, onde j representa o índice da camada no filme dielétrico. O expoente ν controla o grau de aperiodicidade da estrutura. Consideramos que a estrutura dielétrica resultante é envolvida pelo vácuo. Para $\nu = 1$ e α racional, teremos uma seqüência de índices de refração puramente periódica e o espectro de transmissão apresenta bandas de transmissão alternadas por bandas de gap fotônico. Para $\nu = 1$ e α racional, a seqüência se torna quasi-periodica (incomensurável) e o espetro de modos propagantes se torna fractal [7, 8]. Para $\nu < 1$ a seqüência é aperiódica com o comprimento de onda da modulação dos índices de refração aumentando como uma função do índice j da camada. Neste regime, o espectro exibe modos localizados e estendidos. No regime oposto de $\nu > 1$, o comprimento de onda da modulação decresce com o índice j da camada e muitos estados se

Figura 3.1: Espectro de transmissão de uma estrutura de multicamadas com diferentes valores de $\nu e 5 \times 10^3$ camadas como função de $\delta = \omega nd/c$ ($nd = n_A d_A = n_B d_B$). Para $\nu > 1$, a estrutura é pseudo-aleatória e o espectro possui picos estreitos de transmissão na vizinhança das ressonâncias de Bragg. Para $\nu < 1$, a transmissão pode ser largamente suprimida com o aumento de ν . No caso periódico incomensurável ($\nu = 1$) o espectro apresenta uma estrutura auto-similar de gaps típico de uma seqüência dielétrica de Fibonacci.

tornam localizados, com exceção dos modos ressonantes, caracterizando um regime pseudo-aleatório.

3.2 Resultados

Em nossos cálculos utilizamos $\alpha = (\sqrt{(5)} - 1)/2$ (a "média dourada"), $n_A = 1.5$ e $n_B = 2.5$. Fig 3.1 mostra o espectro de transmissão de uma estrutura de multicamadas com diferentes valores de ν e $N = 5 \times 10^3$. Como foi utilizado camadas de mesmo caminho óptico, a freqüência do modo é proporcional à mudança de fase δ dentro de cada camada. Para $\nu = 0, 5$, o espectro é denso com um grande número de freqüências transmissíveis. Esta característica é devida ao fato de que o número de interfaces entre camadas dielétricas distintas é pequeno neste regime. Para $\nu = 1, 0$ temos a presença de gaps que seguem um padrão auto-similar. Este espectro é típico de estruturas quasi-periódicas com seqüências incomensuráveis. Para $\nu = 1, 5$, a seqüência apresenta um caráter pseudo-aleatório e muitos dos modos passam a ser localizados, com exceção dos modos na vizinhança das ressonâncias de Bragg. Um aspecto interessante é observado quando se incrementa o valor de ν de $\nu = 0$ (seqüência uniforme) para $\nu = 1$ (seqüência quasi-periódica). O número de freqüências transmissíveis muda de maneira não-monotônica neste regime. Esta característica é representada pelo caso de $\nu = 0, 7$ que exibe poucos modos de transmissão.

O comportamento não-monotônico do espectro de transmissão é descrito mais quantitativamente na Fig. 3.2, onde temos a média espectral da transmissão $(\langle T \rangle_{\delta} = (1/\pi) \int_0^{\pi} T(\delta) d\delta)$ como uma função do número de camadas N para diferentes valores de ν . A média espectral da transmissão decai à medida que o número de camadas aumenta. Entretanto, a dependência espacial é mais fraca no regime quasi-periódico de $\nu = 1$, especialmente no caso de N grande. Para $\nu > 1$, o decaimento da transmissão média com o número de camadas se torna mais forte com o aumento de ν , uma característica associada com o forte caráter pseudo-aleatório da seqüência resultante. Por outro lado, no regime de $\nu < 1$, a dependencia com N da transmissão média inicialmente é forte como o aumento de ν , mas esta tendência é revertida à medida que o regime quasi-periódico aproxima-se.

Uma análise complementar da influência do expoente de aperiodicidade ν na média espectral da transmissão pode ser obtida traçando o gráfico de sua de-

Figura 3.2: Média espectral da transmissão como função do número de camadas N para diferentes valores de ν . (a) $\nu \leq 1.0$; (b) $\nu \geq 1.0$. Para o caso periódico incomensurável $\nu = 1$, a transmissão apresenta uma dependência espacial muito fraca. Para pequenos valores de ν , a média espetral da transmissão em estruturas finas pode se tornar tão pequena quanto a obtida para o caso pseudo-aleatório com $\nu > 1$.

pendência com ν para um número fíxo de camadas, como mostrado na fig. 3.3 onde consideramos $N = 10^4$ camadas. A transmissão média apresenta um pico em $\nu = 1$ com forte flutuação no entorno desta condição. Para ν grande, a transmissão é pequena, apresentando uma pequena flutuação ao redor de um valor constante. No regime de fraca aperiodicidade, temos um mínimo bem definido, sinalizando o cruzamento entre o comportamento da estrutura uniforme e da quasi-periódica.

Uma visão geral da dependência da transmissão média com o expoente ν pode ser diretamente correlacionado com a decomposição espectral da seqüência de camadas que forma a estrutura. Na fig. 3.4, plotamos uma seqüência típica de índices de refração juntamente com o sua densidade espectral de Fourier. Nota-se que, para ν pequeno o espectro de Fourier apresenta um pico estreito nas baixas

Figura 3.3: Média espectral da transmissão como função de ν para um amostra com número fixo de camadas $N = 10^4$. A média espectral da transmissão mostra um máximo para o caso periódico incomensurável $\nu = 1.0$ e um mínimo local no regime de $\nu < 1$. O *plateau* atingido para $\nu > 1$ é uma característica do regime pseudo-aleatório.

freqüências, o que reflete o longo comprimento de onda médio da modulação dos índices de refração. Este pico se torna ligeiramente maior à medida que o número de interfaces entre as camadas aumenta. No caso incomensurável $\nu = 1$, a densidade espectral da seqüência assume um padrão auto-similar do tipo *delta* com uma freqüência predominante igual a $f = \alpha/2$, típico de uma seqüência quasi-periódica de Fibonacci. No regime de $\nu > 1$, o índice de refração se assemelha a um *ruido-rosa* descorrelacionado e a densidade espectral de Fourier não apresenta freqüência típica.

O grau de correlação na seqüência dos índices de refração pode ser quantificado através do cálculo do Espectro de Fourier Integrado (IFS). Uma seqüência ruidosa deve apresentar um IFS elevado, enquanto que seqüências mais regulares apresentam espectro de Fourier mais estreito e conseqüentemente um IFS menor. O IFS da seqüência de índices de refração como uma função de ν é reportada na fig.

Figura 3.4: Painel esquerdo: Seqüência típica de índices de refração gerados por uma função de modulação aperiódica. Painel direito: densidade espectral de Fourier correspondente para cada seqüência de índices de refração. Para pequenos valores de ν , a densidade espectral apresenta um pico estreito ao redor da freqüência média da modulação da seqüência. Em $\nu = 1$ a estrutura obedece uma seqüência de Fibonacci, a qual apresenta uma densidade espectral auto-similar. Para $\nu > 1$ a seqüência é pseudo-aleatória com um espectro do tipo ruido-rosa.

3.5. Vemos um *plateau* para valor de ν grande, apontando uma irrelevância do valor em questão com relação ao expoente de aperiodicidade no regime fortemente pseudoaleatório. O mínimo em $\nu = 1$ está associado com a estrutura quasi-periódica da seqüência de Fibonacci para este caso particular. No regime fracamente aperiódico, o IFS passa por um máximo que é resultado das contribuições opostas gerada pelas própria inclusão de interfaces, o que produz espalhamentos, e a proximidade da quasi-periodicidade, o que faz susgir modos ressonantes. Nota-se que o comportamento geral da média espectral da transmissão, apresentada na fig. 3.3, de certa forma captura as características essenciais mostradas pela IFS da estrutura em questão. Uma seqüência fortemente correlacionada apresenta um espetro de

Figura 3.5: Espectro de Fourier Integrado (IFS) como função do expoente de aperiodicidade ν . O mínimo pronunciado em $\nu = 1$ aponta uma forte correlação devido à relação da seqüência de camadas em questão com a tipo Fibonacci. O *plateau* para $\nu > 1$ reflete a natureza não correlacionada da seqüência de camadas neste regime. O máximo em $\nu < 1$ é uma conseqüência do efeito oposto causado pelo espalhamento em interfaces e o surgimento de modos ressonantes (ver texto).

Fourier estreito, levando a um pequeno IFS e uma transmissão média alta.

Em resumo, vimos que as propriedades de transmissão de uma estrutura binária de multicamadas dielétricas com modulação aperiódica sobre a seqüência de índices de refração apresenta diferentes comportamentos para cada grau de aperiodicidade. Para o caso $\nu > 1$ temos uma seqüência resultante do tipo pseudoaleatória, de forma que a localização de Anderson dos modos eletromagnéticos faz surgir um largo gap no espectro de transmissão e estreitas bandas de transmissão centradas pelos modos ressonantes de Bragg. No regime de $\nu < 1$, obtivemos uma dependência não monotônica da média espectral da transmissão com o expoente de aperiodicidade ν . Este comportamento não convencional está associado com a ação de dois efeitos opostos que surgem neste tipo de distribuição. Um efeito está relacionado com o espalhamento nas interfaces entre camadas dielétricas distintas. Este fenômeno leva à uma redução da transmissão quando o número de interfaces começa a crescer. No entanto, quando este número se torna grande o suficiente, a condição de quasi-periodicidade se aproxima, estabilizando modos transmissíveis ressonantes. Como consequência, a média da transmissão passa por um mínimo no intervalo de $0 < \nu < 1$ que é menor que o apresentado no regime de forte pseudo-aleatoriedade. Uma análise do espectro de Fourier mosta que tendência é diretamente relacionada com a correlação exibida pela própria seqüência de índices de refração.

Capítulo 4

Multicamadas com Metamateriais

Os metamateriais são estruturas ópticas construídas de tal maneira a apresentarem permissividade e permeabilidade ambos negativos. Esta característica leva a fenômenos eletromagnéticos não usuais, com por exemplo, o produto vetorial entre os campos $\vec{E} \times \vec{H}$ aponta para a direção $-\vec{k}$ para onda plana propagante. Este tipo de material foi inicialmente idealizado em meados do século passado pelo cientista russo Victor Veselago [42], mas suas predições não puderam ser verificadas experimentalmente por que até então não se conhecia uma substância que apresentasse permeabilidade e permissividade negativas. No final dos anos 90, Pendry [43] et. al. introduziram uma matriz periódica de anéis condutores abertos não-magnéticos cujo comportamento dominante pode ser interpretado como havendo uma permeabilidade magnética efetiva. Fazendo a unidade constituinte da matriz de maneira ressonante, a magnitude de $\mu_{eff}(\omega)$ é consideravelmente incrementada, levando a um valor de μ_{eff} positivo grande próximo do lado de baixa freqüência da ressonância e, mais notavelmente, um valor negativo de μ_{eff} próximo do lado de alta freqüência da ressonância, esta estrutura recebeu o nome de *Split Ring Ressonator* (SRR). Baseado neste trabalho, Smith *et. al.* propuseram um meio composto por uma matriz periódica de SRRs inter-espaçados por fios contínuos(fig. 4.1) Esta estrutura apresenta simultaneamente um valor negativo para a permeabilidade magnética efetiva $\mu_{eff}(\omega)$ e para a permissividade efetiva $\epsilon_{eff}(\omega)$ na região de freqüência do micro-ondas. A matriz de fios metalicos finos é responsável por criar um meio de propagação com permissividade efetiva dada por:

$$\epsilon_{eff} = 1 - \frac{f_e^2}{f^2 + i\gamma_e f} \tag{4.1}$$

54

A matriz de SRR's, por outro lado, é responsável pela forma ressonante da permeabilidade magnética efetiva. Sua fórmula teórica é dada por:

$$\mu_{eff} = 1 - \frac{Ff^2}{f^2 - f_m^2 + i\gamma_m f}$$
(4.2)

onde f_e é a freqüência do plasma eletrônico, f_m é a freqüência de ressonância magnética, γ_e (γ_m) representa as perdas do sistema, e F é um fator de preenchimento dos SRR.

A partir daí, verificações experimentas das predições de Veselago puderam ser realizadas. K. Guven, M. D. Caliskan e E. Ozbay [44] demonstraram experimentalmente a banda de transmissão de um metamaterial unidimensional sob uma propagação normal ao plano no regime de microondas.

Novos e fascinantes fenômenos foram descobertos com a utilização de metamateriais. Pendry comprovou que uma lâmina de material com índice de refração negativo tem o poder de focalizar todas as componentes de Fourier de uma imagem 2D. Ele nomeou este dispositivo de "superlente" [45]. Esta estrutura também mostrou promover um deslocamento lateral de um feixe Gaussiano de incidência oblíqua

Figura 4.1: Representação da estrutura proposta por Smith. Os anéis abertos ressonantes proporcionam permeabilidade magnética negativa, enquanto que a matriz periódica de fios é responsável pela permissividade elétrica negativa na região de micro-ondas

[46].

Para uma estrutura de multicamadas contendo metamaterial, novos fenômenos também se manifestam, como o surgimento de pseudo-modos de freqüência complexa, modos discretos e modos de tunelamento fotônico na estrutura de bandas [47]. A união de camadas de metamaterial e dielétrico ordinário ainda faz surgir um novo tipo de PBG de natureza diferente do obtido em um PC ordinário. Este PBG recebe o nome de *zero-* \hat{n} gap [48, 49] e emerge naturalmente quando a média volumétrica do índice de refração efetivo se iguala a zero. Este PBG apresenta características especiais tais como a invariância com a mudança da constante de rede. Verificações experimentais deste novo tipo de PBG foram realizadas utilizando metamateriais do tipo double-S shaped[50].

O efeito da desordem em uma seqüência unidimensional constituída de metamaterial e dielétrico ordinário foi estudado teoricamente por Ara A. Asatryan *et.*

Instituto de Física - UFAL

al. [51]. Em seu artigo, a permeabilidade e a permissividade da j-ésima são dados por $\mu_j = \pm 1$ e $\epsilon_j = \pm (1 + \delta_j \pm i\sigma)^2$ respectivamente. O sinal negativo diz respeito às camadas de metamaterial e o positivo às camadas dielétricas ordinárias. A flutuação no índice de refração δ_j é uma quantidade aleatória independente distribuída uniformemente no intervalo [-Q, Q]. No regime de comprimento de onda longo, o comprimento de localização mostrou ser ordens de magnitude maior se comparado com a estrutura puramente ordinária, proporcional à sexta potência do comprimento de onda, em contraste com a dependência quadrática usual para o sistema puramente ordinário.

Nosso estudo, diferentemente do trabalho de Asatryan[51], considera que as camadas apresentam valor de índice de refração e espessura bem definidos, a desordem sendo portanto introduzida no posicionamento de tais camadas. Analisamos a influência da inclusão de metamateriais confrontando diretamente com resultados obtidos para uma estrutura puramente ordinária.

Apesar de os metamateriais serem essencialmente dispersivos, este fato não foi considerado em nossos estudos. Apostando em futuras descobertas de novas estruturas de metamaterial, nos preocupamos em obter resultados que independam da relação de dispersão particular de cada estrutura.

4.1 Resultado

Para uma análise numérica, assumimos camadas ideais (não dispersivas e não absorventes). A estrutura de multicamadas sendo composta por uma seqüência aleatória de camadas de dois tipos distintos, uma dielétrica isotrópica A e uma de metamaterial B. O índice de refração e a espessura foram calculadas de tal maneira que o caminho óptico de ambas as camadas obedecem à condição $|n_A d_A| = \frac{5}{3}|n_B d_B|$.

Figura 4.2: Espectro de transmissão de uma estrutura aleatória de multicamadas ordinária (a) (composta unicamente por camadas dielétricas ordinárias) e mista (b) (composto por metamateriais e camadas dielétricas) para o caso particular de $|n_A d_A| = \frac{5}{3} |n_A d_A|$. Ambos os casos possuem um padrão de picos de transmissão similar. Picos com transmissão finita ocorrem sempre que um múltiplo do modo de meio comprimento de onda iguala-se com o comprimento óptico de um dos tipos de camadas constituinte. Na vizinhança do modo completamente transparente $\omega_{0,0}$ e $\omega_{5,3}$, a largura da banda de transmissão é muito menor para o caso misto, indicando uma maior sensibilidade à desordem com a inclusão dos metamaterias.

Se este parâmetro obedecessem à condição de Bragg $|n_A d_A| = |n_B d_B|$, teríamos o surgimento de um zero- \bar{n} gap, onde uma das principais características é a insensibilidade à desordem. Esta condição faz com que uma estrutura de multicamadas não-dispersivas apresente um largo band-gap que cobre todo o espectro, com exceção apenas dos modos onde a diferença de fase $\delta = \omega n d/c = i\pi$ (i = 0, 1, 2, ...). Este cenário não suportaria bandas de transmissão de largura finita.

A desordem foi implementada assumindo que a i-*ésima* camada da seqüência possui a mesma probabilidade de ser do tipo A ou do tipo B. A fim de se mostrar explicitamente a influência direta das camadas de metamaterial, todas as quantidades foram obtidas tanto para o caso misto (consistindo de metamateriais e dielétrico ordinário) como para uma estrutura ordinária (consistindo apenas de camadas dielétricas ordinárias). Em ambos os casos, assumimos o mesmo valor absoluto para o índice de refração e espessura.

Do ponto de vista matemático, a única mudança que deve ser feita no cálculo da matriz de transferência (eq. 2.34) é a inclusão do sinal negativo no argumento das funções trigonométricas $\delta = -k|n|d$ para matrizes relacionadas com camadas de metamaterial.

A primeira quantidade analisada foi o espectro de transmissão. Figura 4.2 representa uma média sobre 10³ realizações de desordem em uma estrutura com N = 200 camadas. Os gráficos fazem referência à estrutura ordinária Fig. 4.2(a) e a estrutura mista Fig. 4.2(b). Observamos o mesmo padrão de picos de transmissão independente da presença ou não das camadas de metamateriais. Estes modos ressonantes ocorrem quando um múltiplo inteiro de meio comprimento de onda da luz incidente iguala-se ao comprimento óptico de uma das camadas constituintes. Sob esta condição, a onda eletromagnética não sofre espalhamento por tal camada, independentemente do sinal do índice de refração da camada. Rotulamos as freqüências de ressonância como $\omega_{i,j}$, onde *i* e *j* estão relacionados com o número de meios comprimentos de onda ajustáveis no tamanho do caminho óptico de cada camada. O índice i está relacionado com a camada de maior caminho óptico enquanto que j está relacionado com a camada de menor caminho óptico. Se $i \in j$ são ambos inteiros, o modo se torna completamente transparente. Formalmente, isto reflete o fato de que todas as matrizes no produtório (2.36) assumirem o tipo unitário ($\pm I$). Outros modos ressonantes ocorrem quando apenas um dos índices assume valor inteiro. Neste caso, apenas as matrizes associadas com as camadas cujo caminho óptico comporta um número inteiro de meios comprimentos de onda assumem um tipo unitário $\pm I$.

Figura 4.3: (a) Média espectral da transmissão versus o número de camadas N em uma região de freqüência em volta do modo ressonante da estrutura ordinária. A transmissão decai com $1/N^{1/2}$. (b) O mesmo que o anterior para uma estrutura composta por camadas ordinárias e metamaterial. Neste caso, a dependência de tamanho finito é mais forte, com o decaimento assimptótico da transmissão dado por 1/N. (c) Comprimento de localização próximo ao modo ressonante $\omega_{5,3}$ de uma estrutura mista de $N = 10^4$ camadas. A divergência quadrática reproduz a mesma lei de escala encontrada na estrutura puramente ordinária.

Neste caso, o sistema comporta-se como uma única camada composto pelo material do tipo oposto.

Uma característica importante é observada no espetro de transmissão ao redor dos modos completamente transparentes $\omega_{0,0} \in \omega_{5,3}$. Nestas regiões de freqüência, a largura da banda de transmissão é muito mais estreita para a estrutura mista contendo metamateriais. A fim de investigar mais detalhadamente este fato, calculamos a média espectral da transmissão na região de freqüência no entorno destes picos, como mostrado na fig. 4.3(a-b). Os resultados representam uma média sobre 10^2 realizações de desordem. Comparamos o comportamento de escala de tamanho finito para as estruturas de multicamadas ordinária [Fig. 4.3(a)] e mista. [Fig. 4.3(b)]. A média espectral da transmissão para o caso ordinário decai com $1/N^{1/2}$. O mesmo expoente obtido no capítulo 2, onde os parâmetros das camadas satisfazem a condição de Bragg. Encontramos uma nova lei de escala quando uma das camadas é composta por um metamaterial. Neste caso, a média da transmissão possui uma forte dependência como o número total de camadas, decaindo assimptoticamente com 1/N. Uma outra quantidade importante que caracteriza a localização de Anderson da luz em estruturas dielétricas desordenadas é o comprimento de localização (ξ), considerado como o inverso do expoente de Lyapunov [$\xi = 1/\Lambda = -\lim_{N\to\infty} (N/\ln T)$]. Fig.4.3(c) mostra uma média sobre 10 realizações de desordem, calculada na vizinhança do modo $\omega_{5,3}$. Observamos uma divergência quadrática do comprimento de localização com a aproximação do modo ressonante. Isto reproduz a mesma lei de escala relatada previamente para o caso puramente ordinário.

A competição entre um forte decaimento da transmissão com o número de camadas e o surgimento de modos ressonantes de *necklace* gerados pela desordem sugerem que a influência da desordem nas propriedades de transmissão podem apresentar uma nova característica na presença de metamateriais. Para explorar este ponto, investigamos a média espectral da transmissão como função do grau de desordem, conforme o estudo descrito no capítulo 2. Nossos resultados são mostrados na fig. 4.4 para $N = 10^2$ camadas, média calculada sobre 5×10^3 diferentes amostras de desordem e dentro de uma região de freqüência centrada no modo $\omega_{5,3}$. A curva "O" corresponde ao caso ordinário enquanto que o "M" corresponde ao caso misto.

O efeito predominante da desordem é a localização de Anderson e, conseqüentemente, a redução da banda de transmissão. Este fenômeno se dá devido às múltiplas superposições incoerentes das ondas espalhadas pelas interfaces das camadas. Esta característica é claramente observada para uma estrutura puramente ordinária (ver fig. 4.4) no qual a média espectral da transmissão decresce mono-

Figura 4.4: Média espectral e na desordem da transmissão na visinhança do modo completamente transparente como função do grau de desordem q. A média foi computada sobre 5×10^3 configurações de desordem em estruturas contendo 10^2 camadas. O caso misto (M) mostra um mínimo da transmissão para um grau intermediário de desordem. Sendo a estrutura contendo metamaterial mais sensível à desordem do que a estrutura ordinária, esta exibe uma média da transmissão menor que para o caso ordinário (O).

tonicamente à medida que o grau de desordem aumenta. Uma tendência similar é observada para a estrutura mista no limite de fraca desordem. Entretanto, para a estrutura mista, a média espectral da transmissão apresenta um mínimo aproximadamente em q = 0.15. Este comportamento inesperado é relacionado com um segundo efeito da desordem, que se torna mais proeminente na estrutura mista. Desordem também promove o surgimento de alguns modos ressonantes do tipo necklace que conduzem à uma pequena transmissão nas freqüências de gap. Tal efeito secundário é ocultado pela lenta evolução do gap na estrutura ordinária, como mostrado na fig. 4.5(a). Na estrutura mista, o gap evolui de uma maneira mais rápida devido à forte dependência da média da transmissão com o número de camadas, levando a um forte decaimento da transmissão no regime de fraca desordem (fig. 4.5(b)). Neste regime de desordem, onde a localização de Anderson é predominante, a estrutura de bandas do caso periódico (q = 0) dá lugar a uma larga região de freqüência de baixa transmissão. A contribuição dos estados ressonantes de necklace para a transmissão então se torna mais evidente no regime de desordem forte. Uma vez que estes modos se tornam mais freqüentes neste grau de desordem, o aumento de q promove um melhoramento da transmissão da luz na região espectral ao redor do modo completamente transparente, como mostra fig. 4.2(c).

Finalmente, gostaríamos de evidenciar que o pico estreito de transmissão na vizinhança próxima do modo completamente transparente é relativamente insensível à desordem na estrutura mista, como pode ser visto na fig. 4.5(b-c). De fato, estes picos relembram pontos de freqüência singular das estruturas mistas com *zero* – \bar{n} [48]. Em estruturas finitas, a singularidade é trocada por um pico estreito cuja largura é inversamente proporcional ao número total de camadas, o que é consistente com nossas previsões anteriores de uma lei de escala de 1/*n* para a média espectral

Figura 4.5: Espectro de transmissão na visinhança do modo $\omega_{5,3}$ para diferentes graus de desordem. Consideramos estruturas com $N = 10^2$ camadas e média sobre 10^5 realizações de desordem. Figura (a) mostra o espectro de uma estrutura ordinária. Neste caso, a transmissão decresce monotonicamente como o aumento do grau de desordem. Figura (b) mostra o regime de fraca desordem de uma estrutura mista, onde o efeito predominante é a forte localização de Anderson, que leva à um rápido decaimento da transmissão à medida que o grau de desordem aumenta. No regime de forte desordem (c), a transmissão de uma estrutura mista é reforçada pela aumento do grau de desordem à medida que o número de modos de necklace também aumenta.
de transmissão.

Com estes resultados podemos constatar que a inclusão de metamaterial na composição de uma estrutura binária de multicamadas aleatória modifica as leis de escala para a transmissão na região de freqüência ao redor do modo completamente transparente. A média espectral da transmissão decai com 1/N, sendo portanto mais rápido que o obtido para uma estrutura puramente ordinária. Apesar deste fato, o comprimento de localização obedece à mesma lei quadrática do caso ordinário à medida que a freqüência se aproxima do modo ressonante. O rápido decaimento e o surgimento de alguns poucos modos de necklace dentro da região de gap para o regime de forte desordem promovem uma dependência não monotônica da transmissão com o grau de desordem para a região espetral próxima do modo completamente transparente. Esta nova característica está em contraste com o fenômeno usual de localização de Anderson, que resulta em um decaimento da transmissão como função do grau de desordem. Nas estruturas contendo metamaterial existe um grau de desordem característico no qual o sistema apresenta um mínimo da média espectral da transmissão. Esta característica precisa ser levada em conta ao se projetar dispositivos ópticos com esta estrutura de multicamadas.

Capítulo 5

Multicamadas com Cristal Líquido Colestérico

Recentemente, vários trabalhos investigaram estruturas de multicamadas utilizando cristal líquido colestérico (ChLC)[56, 57, 58]. Os cristias líquidos na sua fase colestérica apresentam como principal característica o vetor diretor da orientação preferencial das moléculas girante ao redor de um eixo fixo. Devido à esta orientação helicoidal, uma estrutura de ChLCs constitue um cristais fotônicos unidimensionais naturais auto-consistente. De fato, estes sistemas apresentam uma única banda de reflexão para ondas eletromagnéticas com polarização circular cuja orientação coincide com o sinal da hélice do meio quiral (reflexão seletiva)[59]. Além disso, ChLCs exibem um *band gap* bem definido, cujas características dependem da birrefringência e do comprimento do *pitch* da estrutura helicoidal do material. Por conta disso, as propriedades únicas do ChLCs têm motivado aplicações em dispositivos ópticos de difração seletiva[60, 61] e *displays* sem o uso de luz traseira [57, 58]. Estudos teóricos e experimentais recentes sobre as propriedades de reflexão em sistemas de multicamadas com ChLC que apresentam uma descontinuidade na orientação do vetor diretor (ângulo de defeito) demonstraram que múltiplos PBGs emergem no espectro de transmissão de um sistema ChLC. As características destes múltiplos PBGs podem ser ajustadas pela orientação do ângulo de defeito na estrutura helicoidal [57]. Em particular, uma reflexão no vermelho-verde-azul (RGB) foi observada quando um ângulo de defeito de $\pi/3$ foi introduzido na estrutura de multicamadas com ChLC. Múltiplos PBGs também foram obtidos em filmes formados por uma seqüência alternada de ChLC polimérico e camadas dielétricas isotrópicas [58]. Em ambos os casos, as características espectrais dos múltiplos PBGs podem ser convenientemente controladas, tal como a reflectância, posição espectral, largura, e o número de bandas. Apesar das propriedades espectrais dos múltiplos PBGs em multicamadas de ChLC terem sido extensivamente investigadas sob incidência normal, poucos trabalhos se propuseram a estudar a robustez de suas propriedades de reflexão para incidência oblíqua.

Neste capítulo, apresentamos os resultados de um estudo das propriedades fotônicas de um sistema de multicamadas com ChLC para defeito de fase Fibonacciano assim como para uma seqüência alternada de camadas de ChLC e camadas dielétricas isotrópicas. Utilizando o método da matriz 4×4 de Berreman [62, 63], determinamos o espectro de reflexão e o diagrama cromático CIE 1931 para estas estruturas.

5.1 Cristal Líquido Colestérico

Determinados materiais podem apresentar uma série de transições envolvendo novas fases quando passam do estado sólido para estado líquido. As propriedades mecânicas, estruturais e ópticas destas novas fases são intermediárias entre aquelas

Figura 5.1: Esquema gráfico do alinhamento médio das moléculas para a fase sólida (a), cristal líquida (b) e líquida isotrópica (c)

de um sólido e de um líquido isotrópico. Por conta disto, chamamos tais materiais de *Cristais Líquidos*.

As primeiras observações de um comportamento líquido-cristalino ou *me-somórfico* foram feitas em 1888 pelo físico alemão O. Lehmann e pelo botânico austríaco Friedrich Reintzer [64, 65], o qual notou que um determinado composto, o *benzoato de colesterila*, apresentava dois pontos de fusão distintos. Seu artigo, originalmente publicado em Alemão [64], foi traduzido para o Inglês e publicado no periódico *Liquid Crystal* [65], para celebrar o centenário do primeiro artigo na área.

Em 1907, Vorländer [66] descobriu que para uma determinada substância apresentar dois pontos de fusão era necessário que suas moléculas apresentassem um formato alongado tipo bastão. Com esta descoberta foi possível modelar matematicamente a estrutura molecular de muitas fases de cristal líquido, dando origem ao estudo teórico desta área.

Segundo de Gennes e Prost [59], podemos definir o cristal líquido como uma fase intermediária que tem uma ordem semelhante a de um líquido em pelo menos uma direção e possui um grau de anisotropia que é característico de um certo tipo

Figura 5.2: Esquema representativo da fase colestérica. O vetor diretor sofre uma distorção, rotacionando em torno de um eixo perpendicular a ele, descrevendo uma hélice circular. O esquema da figura representa uma estrutura com largura igual à metade do comprimento do pitch P.

de ordem que pode ser satisfeita se as moléculas que o formam são anisotrópicas, em formato de bastão (calamíticas) ou disco (discóides) por exemplo. Apesar de todas as fases líquido-cristalinas serem formadas por moléculas de estrutura anisotrópica, nem todos os materiais formados por este tipo de moléculas formam um cristal líquido.

No estado líquido-cristalino, as moléculas apresentam uma tendência de alinharemse ao longo de um eixo comum chamado *diretor*. Esta tendência é intermediária à ausência de orientação preferencial da fase líquida isotróprica e ao forte ordenamento da fase sólida (ver fig. 5.1).

Podemos classificar as fases dos cristais líquidos de acordo com a orientação posicional das suas moléculas. Neste sentido temos três grandes categorias: fase nemática, fase colestérica e fase esmética.

A fase colestérica apresenta uma orientação molecular em forma de hélice,

ou seja, o vetor diretor sofre uma distorção, rotacionando em torno de um eixo perpendicular a ele, descrevendo uma hélice circular, conforme figura 5.2.

Várias moléculas que formam a fase colestérica são derivadas do colesterol, daí a origem do nome, apesar de existirem casos que não estão relacionados com o colesterol. O comportamento helicoidal do vetor diretor pode tomar um sentido rotacional tanto esquerdo (*left-handed*) quando direito (*right-handed*).

Assim como acontece na fase nemática, os centros de massa de cada molécula não apresentam ordem de longo alcance e a orientação molecular segue a direção de um eixo preferencial \hat{n} , sendo que para a fase colestérica, este eixo preferencial rotaciona progressivamente em torno do eixo da hélice (ou eixo colestérico). Esta mudança do vetor diretor ocorre naturalmente, sem a presença de qualquer campo externo.

Se assumirmos o eixo da hélice paralelo à direção z, as componentes de \hat{n} são dadas por:

$$n_x = \cos\left(\pm\frac{2\pi}{P}z\right)$$
$$n_y = \sin\left(\pm\frac{2\pi}{P}z\right)$$
$$n_z = 0$$

A escolha do sinal determina o sentido de rotação da polarização. A variação do vetor diretor é periódica em z, cujo período é dado por P, esta quantidade varia como a temperatura e recebe o nome de *pitch*. O valor do pitch depende do material e da temperatura, podendo variar por várias ordens de grandeza, sendo valores típicos na ordem de 200nm em diante. A função tensor dielétrico $\varepsilon(z)$ é dada por $\varepsilon_{i,j} = \varepsilon_{\perp} \delta_{i,j} + \Delta \varepsilon n_i n_j$, onde $(i, j) \in x, y, z, \delta_{i,j}$ é o delta de Kronecker e $\Delta \varepsilon = (\varepsilon_{||} - \varepsilon_{\perp}).$

A estrutura helicoidal do cristal líquido colestérico é responsável pela característica peculiar de reflexão seletiva para luz circularmente polarizada, de forma que o espetro de transmissão para uma luz incidente cuja orientação rotacional da polarização tem o mesmo sentido da orientação rotacional da hélice apresenta uma região de modos proibidos centrada pelo modo de comprimento de onda igual ao pitch ótico $\lambda_P = nP$ do cristal líquido, onde n é índice de refração médio entre os índices ordinário e extraordinário, enquanto que luz circularmente polarizada com sentido rotacional de polarização contrário ao da hélice é completamente transmitida. A largura do PBG do cristal líquido colestérico é proporcional à anisotropia dos índices de refração $\Delta n = n_e - n_o$, onde, em coordenadas gaussianas e para $\mu = 1$, $n_e = \sqrt{\varepsilon_{||}}$ é o índice de refração extraordinário e $n_o = \sqrt{\varepsilon_{\perp}}$ o ordinário.

5.2 Matriz de Berreman 4×4

Diferentemente dos casos estudados até aqui, neste capítulo tratamos de camadas birrefringentes. Por conta disso, o formalismo matricial que relaciona os campos elétrico e magnético nas interfaces se torna um pouco mais elaborado. Seja uma onda plana monocromática de freqüência angular ω , circularmente polarizada e propagando-se em um meio que apresenta propriedades dielétricas uniformes no plano xy. Tomando o plano de incidência como sendo xz podemos assumir $\vec{E}(x, y, z, t) = \vec{E}(z) \exp[-i(\omega t - \eta kx)] \in \vec{H}(x, y, z, t) = \vec{H}(z) \exp[-i(\omega t - \eta kx)]$, onde $\eta = n_i \sin(\phi)$ é proporcional à componente x do vetor de onda \vec{k} . Substituindo nas equações de Maxwell em coordenadas Gaussianas, obtemos o conjunto de equações escalares:

$$-\frac{\partial E_y}{\partial z} = ikB_x \qquad (5.1a) \qquad \qquad \frac{\partial H_y}{\partial z} = ikD_x \qquad (5.2a)$$

$$\frac{\partial E_x}{\partial z} - i\eta k E_z = ikB_y \qquad (5.1b) \qquad \qquad \frac{\partial H_x}{\partial z} - i\eta k H_z = -ikD_y \qquad (5.2b)$$

$$\eta E_y = B_z \qquad (5.1c) \qquad \qquad \eta H_y = -D_z \qquad (5.2c)$$

Assumindo um meio não magnético ($\mu = I$, onde I é a matriz unitária) com uma tensor dielétrico constante dado por:

$$\varepsilon = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix}$$
(5.3)

podemos reescrever as equações (5.1) e (5.2) utilizando as equações constitutivas da matéria ($\vec{D} = \varepsilon \vec{E}$ e $\vec{B} = \mu \vec{H}$).

$$-\frac{\partial E_y}{\partial z} = ikH_x(5.4a) \qquad \qquad \frac{\partial H_y}{\partial z} = ik(\varepsilon_{11}E_x + \varepsilon_{12}E_y + \varepsilon_{13}E_z)(5.5a)$$
$$\frac{\partial E_x}{\partial z} - i\eta kE_z = ikH_y(5.4b) \qquad \frac{\partial H_x}{\partial z} - i\eta kH_z = -ik(\varepsilon_{21}E_x + \varepsilon_{22}E_y + \varepsilon_{23}E_z)(5.5b)$$
$$\eta E_y = H_z(5.4c) \qquad \qquad \eta H_y = -(\varepsilon_{31}E_x + \varepsilon_{32}E_y + \varepsilon_{33}E_z)(5.5c)$$

De (5.4c) podemos escrever H_z a partir de E_y . Podemos eliminar E_z utilizando (5.5c):

$$E_z = -\frac{1}{\varepsilon_{33}} \left(\eta H_y + \varepsilon_{31} E_x + \varepsilon_{32} E_y \right)$$
(5.6)

substituindo ${\cal H}_z$ e ${\cal E}_z$ obtemos:

Instituto de Física - UFAL

$$\frac{\partial E_x}{\partial z} = ik \left[-\eta \frac{\varepsilon_{31}}{\varepsilon_{33}} E_x - \eta \frac{\varepsilon_{32}}{\varepsilon_{33}} E_y + \left(1 - \frac{\eta^2}{\varepsilon_{33} H_y} \right) \right]$$
(5.7a)

$$\frac{\partial E_y}{\partial z} = -ikH_x \qquad (5.7b)$$

$$\frac{\partial H_x}{\partial z} = ik \left[\left(\frac{\varepsilon_{23}\varepsilon_{31}}{\varepsilon_{33}} - \varepsilon_{21} \right) E_x + \left(\frac{\varepsilon_{23}\varepsilon_{32}}{\varepsilon_{33}} - \varepsilon_{22} + \eta^2 \right) E_y + \frac{\varepsilon_{23}}{\varepsilon_{33}} \eta H_y \right]$$
(5.7c)

$$\frac{\partial H_y}{\partial z} = ik \left[\left(\varepsilon_{11} - \frac{\varepsilon_{13}\varepsilon_{31}}{\varepsilon_{33}} \right) E_x + \left(\varepsilon_{12} - \frac{\varepsilon_{13}\varepsilon_{32}}{\varepsilon_{33}} \right) E_y - \frac{\varepsilon_{13}}{\varepsilon_{33}} \eta H_y \right]$$
(5.7d)

Escrevendo em notação matricial temos:

$$\frac{\partial \psi(z)}{\partial z} = ik\mathcal{D} \cdot \psi(\ddagger) \tag{5.8}$$

onde $\psi(z) = [E_x(z), E_y(z), H_x(z), H_y(z)]^T$ e \mathcal{D} é a chamada Matriz 4×4 de Berreman [62, 63]:

$$\mathcal{D} = \begin{pmatrix} -\eta \frac{\varepsilon_{31}}{\varepsilon_{33}} & -\eta \frac{\varepsilon_{32}}{\varepsilon_{33}} & 0 & 1 - \frac{\eta^2}{\varepsilon_{33}} \\ 0 & 0 & -1 & 0 \\ \varepsilon_{23} \frac{\varepsilon_{31}}{\varepsilon_{33}} - \varepsilon_{21} & \eta^2 - \varepsilon_{22} + \varepsilon_{23} \frac{\varepsilon_{32}}{\varepsilon_{33}} & 0 & -\eta \frac{\varepsilon_{23}}{\varepsilon_{33}} \\ \varepsilon_{11} - \varepsilon_{13} \frac{\varepsilon_{31}}{\varepsilon_{33}} & \varepsilon_{12} - \varepsilon_{13} \frac{\varepsilon_{32}}{\varepsilon_{33}} & 0 & -\eta \frac{\varepsilon_{13}}{\varepsilon_{33}} \end{pmatrix}$$
(5.9)

A solução da equação (5.8) rege a propagação dos campos elétrico e magnético em um meio anisotrópico e pode ser expresso como a superposição de quatro ondas planas distintas

$$\psi(z) = \sum_{l=1}^{4} C_l \psi^{(l)} \exp(ik\lambda_l z)$$
(5.10)

onde $\psi^{(l)}$ são os autovetores e λ_l os autovalores da matriz de Berreman. Para uma camada de ChLC de espessura a, a helicidade do vetor diretor implica em uma

dependência em z da matriz de Berreman, o que invalidaria a solução exata (5.10). Uma solução numérica aproximada pode ser obtida subdividindo virtualmente a camada de ChLC em um grande número M de finas lâminas, de tal maneira que \mathcal{D} possa ser tratada de maneira constante em cada lâmina. Baseado na solução (5.10) escrevemos as componentes dos campos para um plano $z = z_1$ por:

$$E_x = C_1 \psi_1^{(1)} e^{ik\lambda_1 z_1} + C_2 \psi_1^{(2)} e^{ik\lambda_2 z_1} + C_3 \psi_1^{(3)} e^{ik\lambda_3 z_1} + C_4 \psi_1^{(4)} e^{ik\lambda_4 z_1}$$

$$E_y = C_1 \psi_2^{(1)} e^{ik\lambda_1 z_1} + C_2 \psi_2^{(2)} e^{ik\lambda_2 z_1} + C_3 \psi_2^{(3)} e^{ik\lambda_3 z_1} + C_4 \psi_2^{(4)} e^{ik\lambda_4 z_1}$$

$$H_x = C_1 \psi_3^{(1)} e^{ik\lambda_1 z_1} + C_2 \psi_3^{(2)} e^{ik\lambda_2 z_1} + C_3 \psi_3^{(3)} e^{ik\lambda_3 z_1} + C_4 \psi_3^{(4)} e^{ik\lambda_4 z_1}$$

$$H_y = C_1 \psi_4^{(1)} e^{ik\lambda_1 z_1} + C_2 \psi_4^{(2)} e^{ik\lambda_2 z_1} + C_3 \psi_4^{(3)} e^{ik\lambda_3 z_1} + C_4 \psi_4^{(4)} e^{ik\lambda_4 z_1}$$

As equações acima podem ser expressas de uma maneira mais compacta através do formalismo matricial:

$$\psi(z_1) = \Psi_1 \cdot \Gamma_1(z_1) \cdot \mathcal{C} \tag{5.11}$$

onde as matrizes são definidas por:

$$\Psi_1 = \begin{pmatrix} \psi_1^{(1)} & \psi_1^{(2)} & \psi_1^{(3)} & \psi_1^{(4)} \\ \psi_2^{(1)} & \psi_2^{(2)} & \psi_2^{(3)} & \psi_2^{(4)} \\ \psi_3^{(1)} & \psi_3^{(2)} & \psi_3^{(3)} & \psi_3^{(4)} \\ \psi_4^{(1)} & \psi_4^{(2)} & \psi_4^{(3)} & \psi_4^{(4)} \end{pmatrix}$$

$$\Gamma_{1}(z_{1}) = \begin{pmatrix} e^{ik\lambda_{1}z_{1}} & 0 & 0 & 0\\ 0 & e^{ik\lambda_{2}z_{1}} & 0 & 0\\ 0 & 0 & e^{ik\lambda_{2}z_{1}} & 0\\ 0 & 0 & 0 & e^{ik\lambda_{4}z_{1}} \end{pmatrix} \qquad \qquad \mathcal{C} = \begin{pmatrix} C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \end{pmatrix}$$

Para o plano $z = z_1 + \delta z$, onde $\delta z = a/M$ temos:

$$\Psi(z_1 + \delta z) = \Psi_1 \cdot \Gamma_1(\delta z) \cdot \Gamma(z_1) \cdot \mathcal{C}$$
(5.12)

Sendo Ψ uma matriz inversível, podemos escrever a relação entre os campos elétrico e magnético nas interfaces das lâminas por:

$$\psi(z_1 + \delta z) = \underbrace{\Psi_1 \cdot \Gamma_1(\delta z) \cdot \Psi_1^{-1}}_{T_1} \cdot \psi(z_1)$$
(5.13)

Finalmente podemos relacionar os campos nas interfaces da camada completa de ChLC através do produto das matrizes T_i de cada lâmina criada virtualmente

$$\psi(z_1 + a) = T_M \cdot T_{M-1} \cdot \ldots \cdot T_1 \cdot \psi(z_1) \tag{5.14}$$

Em uma estrutura de multicamadas, as condições de contorno exigem a continuidade das componentes paralelas dos campos elétrico e magnético nas interfaces. Por conta disso, a relação entre os campos nas duas interfaces do filme que o separam do meio de entrada e do meio de saída pode ser escrita como uma função do produto de todas as matrizes de transferência. Para a camada dielétrica isotrópica, o cálculo é feito sem a necessidade de fatiamento virtual da camada em finas lâminas.

5.3 Coeficiente de Transmissão

Assumindo uma onda plana monocromática incidindo no filme estratificado sob um ângulo θ . Podemos decompor o campo elétrico nos meios de entrada $(\vec{E_i})$ e de saída $(\vec{E_o})$ nas bases O' e O'' respectivamente, cujos versores $\hat{i}'\hat{j}'$ e $\hat{i}''\hat{j}''$ formam planos paralelos às frentes de onda (ver fig. 5.3a). Sendo $A, R \in T$ as amplitudes (geralmente complexas) do vetor campo elétrico da onda incidente, refletida e transmitida temos:

$$\vec{E}_i = E_{ix}\hat{i'} + E_{iy}\hat{j'} = (A_x + R_x)\hat{i'} + (A_y + R_y)\hat{j'}$$
(5.15)

$$\vec{E_o} = E_{ox}\hat{i''} + E_{oy}\hat{j''} = T_x\hat{i''} + T_y\hat{j''}$$
(5.16)

Fazendo a mudança para a base O (fig. 5.3b):

$$\vec{E}_{i} = (A_{x} + R_{x})\cos(\theta_{i})\hat{i} + (A_{y} + R_{y})\hat{j} + (A_{x} + R_{x})\sin(\theta_{i})\hat{k}$$
(5.17)

$$\vec{E_o} = T_x \cos(\theta_o)\hat{i} + T_y\hat{j} + T_x \sin(\theta_o)\hat{k}$$
(5.18)

Por apresentar a mesma simetria no plano xz, podemos empregar os mesmos argumentos utilizados no cap. 2 que demonstram que a componente x do vetor de onda k deve ser constante ao longo do filme. Sendo os meios de entrada e saída iguais e opticamente isotrópicos, com índice de refração n_o , podemos afirmar que $\theta_i = \theta_o = \theta$. Para ondas planas monocromáticas em meios isotrópicos, o campo magnético pode ser escrito em função do campo elétrico pela expressão:

$$\vec{H}(z) = \gamma \hat{u} \times [\vec{E_{0+}}e^{-ikz} - \vec{E_{0-}}e^{ikz}]$$
(5.19)

Instituto de Física - UFAL

Figura 5.3: Representação dos sistemas de referência para a frente de onda (O' e O'') e para a interface da camada (O). Devido à simetria do problema, a constancia da componente k_x impõe que os angulos de incidência e refração são iguais.

onde $\gamma = \sqrt{\frac{\epsilon}{\mu}}$ e E_{0+} e E_{0-} representam respectivamente os vetores amplitude da onda progressiva e da onda retrógrada ao longo da direção de propagação \hat{u} . Temos portanto como campos de entrada:

$$\vec{E}_{i} = (A_{x} + R_{x})\cos(\theta)\hat{i} + (A_{y} + R_{y})\hat{j} + (A_{x} + R_{x})\sin(\theta)\hat{k}$$
(5.20)

$$\vec{H}_{i} = -\gamma_{0}(A_{y} - R_{y})\cos(\theta)\hat{i} + \gamma_{0}(A_{x} - R_{x})\hat{j} - \gamma_{0}(A_{y} - R_{y})\sin(\theta)\hat{k}$$
(5.21)

e para os campos de saída

$$\vec{E_o} = T_x \cos(\theta)\hat{i} + T_y\hat{j} + T_x \sin(\theta)\hat{k}$$
(5.22)

$$\vec{H_o} = -\gamma_0 T_y \cos(\theta)\hat{i} + \gamma_0 T_x \hat{j} - \gamma_0 T_y \sin(\theta)\hat{k}$$
(5.23)

A relação entre as componentes $\hat{i} \in \hat{j}$ dos campos $\vec{E}(z) \in \vec{H}(z)$ na primeira e última interfaces do filme é obtida através da matriz de transferência (5.14) obtida na seção anterior. Por questão de conveniência, utilizaremos a inversa da matriz T, de forma que:

$$\begin{bmatrix} (A_x + R_x)\cos(\theta) \\ (A_y + R_y) \\ -\gamma_0(A_y - B_y)\cos(\theta) \\ \gamma_0(A_x - R_x) \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & T_{13} & T_{14} \\ T_{21} & T_{22} & T_{23} & T_{24} \\ T_{31} & T_{32} & T_{33} & T_{34} \\ T_{41} & T_{42} & T_{43} & T_{44} \end{bmatrix} \cdot \begin{bmatrix} T_x\cos(\theta) \\ T_y \\ -\gamma_0T_y\cos(\theta) \\ \gamma_0T_x \end{bmatrix}$$
(5.24)

Resolvendo o sistema acima para as componentes das ondas $A \in R$ temos:

$$\begin{bmatrix} A_x \\ R_x \\ A_y \\ R_y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} D_{11} + \gamma_0 D_{41} & 0 & D_{12} + \gamma_0 D_{42} & 0 \\ D_{11} - \gamma_0 D_{41} & 0 & D_{12} - \gamma_0 D_{42} & 0 \\ D_{21} - \gamma_0 D_{31} & 0 & D_{22} - \gamma_0 D_{32} & 0 \\ D_{21} + \gamma_0 D_{31} & 0 & D_{22} + \gamma_0 D_{32} & 0 \end{bmatrix} \cdot \begin{bmatrix} T_x \\ 0 \\ T_y \\ 0 \end{bmatrix}$$
(5.25)

onde D_{uv} são os elementos da matriz 4×2 :

$$D = \begin{bmatrix} T_{11} + \gamma_0 T_{14} / \cos(\theta) & T_{12} / \cos(\theta) - \gamma_0 T_{13} \\ T_{21} \cos(\theta) + \gamma_0 T_{24} & T_{22} - \gamma_0 T_{23} / \cos(\theta) \\ T_{31} + \gamma_0 T_{34} / \cos(\theta) & T_{32} / \cos(\theta) - \gamma_0 T_{33} \\ T_{41} \cos(\theta) + \gamma_0 T_{44} & T_{42} - \gamma_0 T_{43} / \cos(\theta) \end{bmatrix}$$
(5.26)

Definimos como coeficiente de transmissão complexo a razão entre as amplitudes complexas de T e A. Das equações acima, podemos calcular o coeficiente de transmissão para cada componente:

$$t_x = \frac{T_x}{A_x} = \frac{v_{13}}{v_{31}v_{13} - v_{33}v_{11}} \left[\frac{A_y}{A_x} - \frac{v_{33}}{v_{13}}\right]$$
(5.27)

$$t_y = \frac{T_y}{A_y} = \frac{v_{11}}{v_{33}v_{11} - v_{31}v_{13}} \left[1 - \frac{v_{31}}{v_{11}} \frac{A_x}{A_y} \right]$$
(5.28)

Instituto de Física - UFAL

Onde v_{ij} são os elementos da matriz da equação 5.25. A quantidade de interesse aqui é a razão entre o quadrado do módulo da amplitude da onda transmitida sobre o quadrado do módulo da amplitude da onda incidente (transmissividade):

$$\tau = \frac{|T|^2}{|A|^2} = \frac{|T_x|^2 + |T_y|^2}{|A_x|^2 + |A_y|^2} = \frac{|t_x|^2 (\frac{|A_x|^2}{|A_y|^2}) + |t_y|^2}{\frac{|A_x|^2}{|A_y|^2} + 1}$$
(5.29)

Como era esperado, o coeficiente de transmissão e a transmissividade dependem das componentes $\hat{i}' \in \hat{j}'$ da onda incidente. Para nosso estudo, estamos interessados em ondas circularmente polarizadas, tomando portanto $\vec{A} = C(\hat{i}' \pm i\hat{j}'')$ onde $|A|^2 = 1$ e o sinal determina o sentido de rotação da polarização.

5.4 Espaço de Cores CIE 1931

Neste capítulo introduzimos uma nova ferramento para análise de espectro, o chamado Diagrama Cromático CIE 1931, criado pela Comissão Internacional em Iluminação (CIE) em 1931 [67, 68].

Em linhas gerais trata-se de uma representação da sensação cromática do olho humano a um determinado espectro, ou seja, ao observar a reflexão de uma luz policromática sobre uma determinada estrutura óptica, os modos refletidos formarão uma determinada cor ao atingir os olhos do observador, que está diretamente relacionada com as características do espectro. Utilizando o diagrama cromático, podemos representar um determinado espectro por um par ordenado que se localiza sobre uma cromaticidade do diagrama, desta maneira podemos ter uma nocão da cor observada quando se incide uma luz policromática sobre um filme de multicamadas, conforme será descrito abaixo.

Instituto de Física - UFAL

Figura 5.4: Funções de associação cromática que caracterizam um observador padrão no espaço de cores CIE 1931.

O olho humano possui receptores (chamados de células cone) para comprimento de onda pequeno (S), médio (M), e grande. Por conta disso, em princípio, três parâmetros descrevem a sensação de cores. Os **valores de tristímulus** de uma cor são a quantidade de três cores primárias em um modelo cromático aditivo de 3componentes necessário para representar uma determinada cor-teste. Os valores de tristímulus são muito freqüentemente expressados no espaço de cores CIE 1931, no qual são denotados por X, Y e Z e representam aproximadamente as cores vermelho (R), verde (G) e azul (b).

Qualquer método específico para associar valores de tristímulus com cores é chamado de *espaço de cores*. O CIE XYZ, um de muitos de tais espaços, é especial por que é baseado na medida direta da percepção visual humana, e serve como base para definir outros espaços de cores.

Devido à natureza da distribuição de células cone no olho, os valores de tristímulus dependem do campo de visão do observador. Para eliminar esta variável,

o CIE definiu um observador padrão como sendo a resposta cromática média do olho humano sob um ângulo de visão de 2 graus, devido à crença de que as células cone sensíveis a cores residem dentro de um arco de 2 graus da fóvea. Por conta disso, o *Observador Padrão CIE 1931* também é conhecido como *Observador Padrão CIE 1931* \mathcal{D} .

O observador padrão é caracterizado por três funções de associação cromática (ver fig. 5.4), que são descrições numéricas da resposta cromática de um observador. O CIE tem definido um conjunto de três funções de associação cromática, chamadas $\bar{x}(\lambda), \bar{y}(\lambda)$, e $\bar{z}(\lambda)$, que podem ser interpretadas como curvas de sensibilidade espectral de três detectores lineares de luz que levam aos valores de tristímulus X, Y e Z. Os valores numéricos tabelados destas funções são conhecidos como Observador Padrão CIE.

Os valores de tristímulus para uma determinada cor com distribuição espectral $I(\lambda)$ são dados em termos do observador padrão por:

$$X = \int_0^\infty I(\lambda)\bar{x}(\lambda)d\lambda \tag{5.30}$$

$$Y = \int_0^\infty I(\lambda)\bar{y}(\lambda)d\lambda \tag{5.31}$$

$$Z = \int_0^\infty I(\lambda)\bar{z}(\lambda)d\lambda \tag{5.32}$$

onde λ é o comprimento de onda da luz monocromática equivalente (medida em nanometros). Outros observadores, tal como o espaço CIERGB ou outros espaços de cores RGB, são definidos por outros conjuntos de funções de associação cromática, e levam a valores de tristímulus para estes espaços.

Figura 5.5: Diagrama cromático utilizado para representar todas as cores visíveis em média pelo sistema visual humano, baseado no valor dos tristímulos obtidos das funções de associação cromática do sistema CIE 1931.

5.4.1 Diagrama Cromático

Devido ao fato de o olho humano apresentar três tipos de sensores cromáticos para responder às diferentes faixas de comprimento de onda, a plotagem completa de todas as cores visíveis é uma figura tridimensional. Entretanto, o conceito de cores pode ser dividido em duas partes: brilho e cromaticidade. Por exemplo, a cor branca é uma cor clara, enquanto que a cor cinza é considerada uma versão menos clara do mesmo branco. Em outras palavras, a cromaticidade do branco e do cinza é a mesma, enquanto que o brilho é diferente.

O espaço de cores CIE XYZ é designado de tal forma que o parâmetro Y representa a medida de brilho ou luminescência de uma cor. A cromaticidade é

portanto especificada por dois parâmetros derivados x e y:

$$x = \frac{X}{X + Y + Z} \tag{5.33}$$

$$y = \frac{Y}{X + Y + Z} \tag{5.34}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y \tag{5.35}$$

O espaço de cores derivado especificado por $x, y \in Y$ é conhecido por espaço de cores CIExyY e é largamente utilizado para especificar cores na prática, sendo portanto o espaço de cores utilizado no trabalho descrito nesta tese.

O diagrama (fig. 5.5) representa todas as cromaticidades visíveis em média por uma pessoa. Estas são mostradas em cores e a região é chamada de *gamut da visão humana*. O gamut de todas as cromaticidades visíveis no diagrama CIE tem o formato de uma língua, cuja curva que a delineia é chamada *locus spectral* e representa a cromaticidade de luzes monocromáticas, com comprimentos de onda dados em nanômetros. A linha reta na fronteira inferior do gamut é chamada *line of purples*. As cores contidas nela, apesar de estarem na fronteira do gamut, não apresentam correspondente monocromático de luz.

5.5 Resultados

Primeiramente, analisamos a estrutura composta por camadas de ChLC destrógeno, com índices de refração do plano birrefringente $n_o = 1.56$ e $n_e = 1.78$ e *pitch* óptico de $\lambda_P = \bar{n}P = 532nm$, onde \bar{n} é o índice de refração médio dado por $\bar{n} = [(n_o^2 + n_e^2)]^{1/2}$. Na interface entre camadas adjacentes, a orientação do vetor diretor do cristal líquido exibe uma descontinuidade α . As camadas de ChLC são

Figura 5.6: Representação gráfica da estrutura de multicamadas formada por (a) ChLCs de pitch único com angulo de defeito α e (b) por camadas alternadas de ChLCs e dielétricos isotrópicos. *P* representa o comprimento do pitch e *d* a largura das camadas isotrópicas. Para o primeiro caso temos a representação da geração $F_3 = [BAB]$ de Fibonacci e para o outro caso a geração $S_3 = [ABABA]$.

distribuídas seguindo a seqüência quasi-periódica de Fibonacci, que é baseada na relação recursiva $F_0 = A$, $F_1 = B$, e $F_j = F_{j-2}F_{j-1}$ para $j \ge 2$. As seqüências de menor ordem são $F_2 = AB$, $F_3 = BAB$, $F_4 = ABBAB$, etc. Figura 5.7 mostra o Diagrama Cromático CIE 1931 para uma estrutura obedecendo a geração F_4 de Fibonacci com ângulo de incidência entre $0 \le \phi \le 90^\circ$ e diferentes ângulos de defeito. O procedimento numérico fatia virtualmente cada camada em 500 lâminas finas.

Para desenvolver um estudo comparativo, calculamos o caso de $\alpha = 0^{\circ}$ no qual o sistema consiste de uma camada única de ChLC. Neste regime, o sistema apresenta uma única banda de reflexão, localizada na região do verde para incidência normal. Com o aumento do ângulo de incidência, a cor associada de reflexão se desloca para a região do azul, mostrando um largo deslocamento cromático. À medida que aumentamos o ângulo de defeito, a cor associada de reflexão para incidência normal se aproxima da região do branco e o deslocamento cromático é reduzido. Para $\alpha = \pi/3$, temos o caso com um menor deslocamento cromático, concentrado na região do branco para ângulos de incidência menores que 30°, sinalizando uma reflexão RGB

Figura 5.7: Diagrama cromático CIE 1931 de uma estrutura F_4 . A linha contínua representa a trajetória da cromaticidade da luz refletida com a mudança do ângulo de incidência a partir de incidência normal até uma tangencial. O diagrama para quatro estruturas com ângulos de defeito diferentes é mostrado. O deslocamento cromático é mínimo para um ângulo de defeito $\alpha = \pi/3$, para o qual a cor associada de reflexão se mantém próximo à região do branco para ângulos de incidência $\phi < 30^{\circ}$ (ver *inset*). Para ângulos de incidência intermediários, a cromaticidade exibe um deslocamento pronunciado para o azul.

omnidirecional. No entanto, um desvio considerável em direção à região do azul permanece presente para ângulos de incidência intermediários $30^{\circ} < \alpha < 60^{\circ}$. Para ângulos de defeito maiores, o deslocamento cromático aumenta novamente e desvia da região do branco para incidência normal. O resultado acima está relacionado com o que foi reportado em [57] no qual um sistema F_4 de Fibonacci com angulo de defeito $\alpha = \pi/3$ apresentou múltiplos PBG nas cores associadas vermelho (R), verde (G) e azul (B) para incidência normal. Aqui, mostramos que esta reflexão RGB é

Figura 5.8: Diagrama cromático CIE 1931 de um sistema S_4 . As linhas contínuas representam a trajetória da cromaticidade da luz refletida à medida que se varia o ângulo de incidência. Apesar da cromaticidade da luz refletida sob incidência normal ser similar à obtida para uma estrutura F_4 de Fibonacci com ângulo de defeito $\alpha = 30^0$, a estrutura S_4 exibe uma seqüência complexa de deslocamentos cromáticos para incidência oblíqua.

sustentada para uma larga região de ângulos de incidência (ver *inset* da Fig. 5.7), com um desvio em direção ao azul para incidência oblíqua intermediária.

No segundo caso, estudamos uma estrutura formada por uma sequência alternada de camadas de ChLC de *pitch* único, com os mesmos parâmetros utilizados acima, e camadas isotrópicas dielétricas, com índice de refração n = 1.5 e largura $d = 0.5 \mu m$. Foi imposto que a primeira e a última camadas sejam tomadas como ChLC, tal que as seqüências de menor ordem são $S_1 = \{A\}, S_2 = \{ABA\},$ $S_3 = \{ABABA\}, S_4 = \{ABABABA\}$ onde A é a camada de ChLC porimérico e B é a camada dielétrica isotrópica. O diagrama cromático CIE 1931 de um sistema S_4 é mostrado na figura 5.8.

Figura 5.9: Espectro de reflexão de uma estrutura F_4 com ângulo de defeito $\alpha = 30^{\circ}$ para diferentes ângulos de incidência (ϕ). As funções (*color matching functions*) utilizadas para obter o diagrama cromático também são mostrados. Para $\phi \leq 30^{\circ}$ os espectros de reflexão são relativamente similares com um ligeiro desvio da banda de reflexão em direção à região de baixos comprimentos de onda. Para ângulos de incidência maiores, os espectros de reflexão mostram apenas uma pequena superposição com as *color matching functions* do vermelho e do azul, o que gera um deslocamento para azul da cromaticidade resultante. Para incidência se aproximando da tangente, a banda de reflexão se torna mais larga e a luz refletida converge para uma cromaticidade branca, independente do ângulo de defeito.

Figura 5.10: Espectro de reflexão do sistema S_4 para diferentes ângulos de incidência (ϕ) . Em comparação com os espectros de F_4 , a banda de reflexão para incidência normal são mais estreitas, o que resulta em uma forte sensibilidade da cromaticidade com o ângulo de incidência. Apesar de haver uma tendência geral de deslocamento para a região do azul, a cromaticidade apresenta uma dependência complexa com o ângulo de incidência à medida que a banda de reflexão cruza as color matching functions.

Para incidência normal, esta estrutura exibe um espectro de reflexão com uma cromaticidade similar à presente na estrutura F_4 apresentada acima com ângulo de defeito $\alpha = 30^{\circ}$ [58]. Apesar desta semelhança, obtivemos uma trajetória cromática diferente no diagrama CIE 1931 como uma função do ângulo de incidência. Neste caso, um descolamento cromático bem maior é observado com o aumento do ângulo de incidência, com uma dependência complexa da cromaticidade com o ângulo de incidência. Um sensível desvio em direção ao vermelho já é observado para um ângulo de incidência de 15°, seguido por uma seqüência complexa de mudanças cromáticas à medida que se aumenta o ângulo de incidência.

Para se obter uma melhor compreensão a cerca das diferenças encontradas no diagrama cromático CIE 1931 para as estruturas $F_4 \in S_4$, traçamos o espectro de reflexão para cada estrutura para ângulos de incidência típicos, como mostrado na fig. 5.9 e fig. 5.10. Nestas figuras também mostramos as color matching functions para as cores azul, verde e vermelho, utilizadas para obter o diagrama cromático. Note que ambas as estruturas apresentam um espectro de reflexão similar para pequenos ângulos de incidência, com um espectro de reflexão da estrutura F_4 apresentando uma semelhança ligeiramente melhor com as bandas RBG. Até um ângulo de incidência $\phi \simeq 30^{\circ}$, estes espectros são aproximadamente independentes do ângulo de incidência, apresentando apenas um pequeno deslocamento de todo o espectro da região do visível para a região de comprimentos de onda menores. Este processo é o responsável pelo deslocamento principal em direção ao azul da cromaticidade da luz refletida em ambas as estruturas F_4 e S_4 . Uma diferença substancial já é observada para $\phi \ge 45^{\circ}$, onde a banda cromática RGB inicial se torna mais estreita e deslocada na direção da região do azul e do ultravioleta, com uma pequena superporsição com as *color matching functions* das cores vermelha e azul. Bandas de reflexão que eram originalmente centradas na região espectral do infravermelho à incidência normal, são deslocadas para a região espectral do visível. Entretanto, o deslocamento das bandas, assim como suas distorções, apresentam um impacto na expressão da cromaticidade. Este impacto é mais pronunciado para o caso onde as bandas de reflexão originais são mais estreitas, como acontece com a estrutura alternada S_4 . A medida que se aproxima de uma incidência tangencial, o espectro de reflexão se torna mais largo e a luz refletida naturalmente retorna à cromaticidade branca.

Os resultados mostraram portanto que, para uma estrutura de multicamadas dielétricas contendo ChLC com defeito nos ângulos de fase que obedecem uma série de Fibonacci, assim como uma estrutura alternada de camadas dielétricas isotrópricas e ChLCs, a cromaticidade associada aos seus espectros de reflexão apresentam um desvio com o ângulo de incidência. No entando, a cromaticidade da estrutura Fibonacciana é menos sensível à mudança no ângulo de incidência quando comparada com a estrutura alternada. O caso mais próximo de um refletor RGB omnidirecional é encontrado portanto para um ângulo de defeito $\alpha = 30^{\circ}$, cuja cromaticidade se apresenta próximo à região do branco para ângulos de incidência $\varphi < 30^{\circ}$. Esta característica é fundamental para o desenvolvimentos de *displays* coloridos por luz refletida.

Capítulo 6

Sumário e Conclusões

O estudo das propriedades dos filmes de multicamadas tem sido um objeto de muito interesse nos últimos anos devido à capacidade de controlar a transmissão, emissão e absorsão da luz de uma maneira relativamente simples. O domínio destas propriedades pode trazer para a humanidade diversas facilidades tecnológicas, principalmente no campo da opto-eletrônica e das comunicações.

Neste contexto, os resultados apresentados nesta tese mostram alguns aspectos da transmissão de ondas eletromagnéticas planas e monocromáticas que se propagam em filmes binários de multicamadas de diferentes configurações, seja com a distribuição dos índices de refração seguindo a determinadas sequências numéricas particulares ou seja utilizando diferentes tipos de materiais ópticos na composição das camadas. Podemos verificar com isso a forte dependência das características do espectro com tais parâmetros, de forma que é possível obter as mais diferentes propriedades com a escolha adequada da ordem posicional das camadas e do tipo de material óptico utilizado.

Utilizando o método de matriz de transerência, verificamos numericamente

que a aplicação da desordem na posição das camadas de um filme binário de Ncamadas dielétricas, cujas características de construção obedecem à condição de Bragg $(n_A d_A = n_B d_B)$, provoca a localização exponencial da maioria dos modos, de forma que o espectro de transmissão apresenta um largo gap fotônico e a banda de modos transmissíveis é centrada em um modo completamente transparente e insensível à desordem, caracterizado pelo fato de que o caminho óptico das camadas é a metade do seu comprimento de onda (modo de meia-onda). Com o aumento do número de camadas, a quantidade de modos localizados aumenta, juntamente com a largura do gap fotônico, de forma que a transmissão média para uma região de freqüências próximas da ressonância de meia-onda cai com $1/N^{1/2}$ e o comprimento de localização diverge quadraticamente à medida que a freqüência se aproxima desta ressonância. O largo gap fotônico obtido neste sistema é centrado no modo cujo caminho óptico das camadas corresponde a 1/4 do seu comprimento de onda (modo quarto-de-onda). Na vizinhança deste modo, o comprimento de localização diverge quadraticamente e a média espectral da transmissão apresenta uma dependência com N do tipo exponencial alongada. Calculando o expoente de Lyapunov para este modo em diferentes realizações de desordem, pudemos verificar que este apresenta uma distribuição Gaussiana, levando à leis de escala distintas para as médias geométrica e aritmética da transmissão. As leis de escala encontradas para estes dois modos ressonantes são análogas às encontradas nos modelo eletrônicos unidimensionais de Anderon com dímeros aleatórios e com desordem off-diagonal respectivamente.

Não apenas a mudança na ordem posicional das camadas como também a inclusão de outros tipos de materiais ópticos é capaz de gerar fortes mudanças das características de transmissão de um filme de multicamadas. Com a inclusão de

Instituto de Física - UFAL

metamateriais como parte da constituição de um filme binário desordenado, verificamos que a média espectral da transmissão para uma região do espectro próximo da ressonância de meia-onda decai com 1/N, ou seja, de maneira mais rápida se comparada ao caso puramente ordinário. Esta nova característica se torna importante quando se deseja um filtragem mais eficiente com uma quantidade menor de camadas. Em decorrencia desta forte localização, o surgimento de modos ressonantes dentro da banda de modos proibidos para um grau de desordem intermediário faz modificar a dependência da média espectral da transmissão com o grau de desordem, de maneira que este apresenta um comportamento não-monotônico, atingindo um valor de mínimo para um grau de desordem intermediário.

Novas caracterísicas foram encontradas com o emprego de uma distribuição de camadas moduladas aperiodicamente em um filme binário. A aperiodicidade é introduzida baseando-se em uma lei senoidal cuja fase φ varia como uma lei de potência do índice das camadas $\varphi \propto j^{\nu}$, onde o expoente ν controla o grau de aperiodicidade. Para $\nu > 1$ a função oscila de tal maneira que a seqüência resultante é efetivamente desordenada e descorrelacionada, levando à localização de Anderson usual. Diferentemente dos resultados obtidos para o modelo eletrônico de Anderson com potencial aperiódico, a média espectral da transmissão apresentou também um comportamento não-monotônico quando o sistema varia entre o caso uniforme em $\nu = 0$ e o caso quasi-periódico em $\nu = 1$, atingindo um mínimo para um grau intermediário de aperiodicidade. Uma análise espectral da distribuição dos índices de refração mostrou haver uma analogia entre o comportamento do espectro da seqüência de índices e da transmissão média, comprovando portanto uma forte relação entre as características da distribuição de camadas com as propriedades de transporte.

Por fim, investigamos as características de reflexão de um filme com camadas birrefringentes. O espectro de reflexão depende fortemente do tipo de polarização da luz incidente. O material escolhido para tal finalidade foi o cristal líquido colestérico (ChLC), caracterizado pelo seu arranjo molecular em forma de hélice. Este arranjo transforma uma simples camada de ChLC em uma cristal fotônico unidimensional, de forma que uma luz circularmente polarizada com a orientação rotacional da polarização igual à orientação rotacional da hélice do ChLC apresentará no seu espectro de transmissão uma região de modos proibidos. A composição de um filme binário com este material pode fazer surgir outras regiões de gap no espectro. Estes novos gaps são controlados pelos parâmetros de construção das camadas, de tal maneira que podemos obter um espectro de reflexão na região do RGB, característica importante para a criação de displays de LCD por reflexão. Neste trabalho investigamos a relação entre a mudança de cromaticidade e o ângulo de incidência de uma luz circularmente polarizada que se propaga através de uma estrutura de ChLC com ângulos de defeito que obedecem a uma seqüência quasi-periódica de Fibonacci assim como uma estrutura formada por camadas alternadas de ChLC e dielétrico isotrópico. O diagrama cromático para cada tipo de filme apresentou uma dependência bem particular, onde a menor variação foi obtida para a geração F_4 do caso Fibonacciano com ângulo de defeito $\alpha = \pi/3$. Neste caso a luz refletida se manteve próxima à região do branco para um largo intervalo de ângulos de incidência, aproximando-se assim de um refletor RGB omnidirecional. A forte sensibilidade entre a maneira com que o correspondente cromático da reflexão varia com o ângulo de incidência e as características de construção do filme abriu precedentes para que novas distribuições de camadas birrefringentes possam ser investigadas a fim de ser obter uma melhor aproximação de um refletor RGB omnidirecional, característica fundamental

Instituto de Física - UFAL

na aplicação de displays LCD por luz refletida.

O estudo das multicamadas, como foi mostrado nesta tese, pode trazer para o campo da óptica e da ciência dos materiais, uma vasta gama de novos fenômenos simplesmente modificando as distribuições de camadas e utilizando os materiais adequados. Esta versatilidade foi o *motor primário* durante todo o nosso estudo e nos motiva a continuar investigando cada vez mais este rico tema.

Referências Bibliográficas

- J. D. Joannopoulos, R. D. Meade, e J. N. Winn, *Photonic Crystals* (Princeton University Press, Princeton, 1995); C. N. Sokoulis *Photonic Band Gaps Localization* (Plenum, New York, 1993).
- [2] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, *ibid.* 58, 2486 (1987).
- [3] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, Science 282, 1679 (1998).
- [4] D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, Appl. Phys. A 68, 25-28 (1999).
- [5] C. J. Oton, L. Dal Negro, P. Pettotti, L. Pancheri, Z. Gaburro, L. Pavesi
- [6] X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi, and J. D. Joannopoulos, Appl. Phys. Lett. 86, 201110 (2005).
- [7] G. Gumbs and M. K. Ali, Phys. Rev. Lett. 60, 1081 (1988).
- [8] W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, Phys. Rev. Lett. 72, 633 (1994).

- [9] R.W. Peng, Mu Wang, A. Hu, S.S. Jiang, G.J. Jin, and D. Feng, Phys. Rev. B, **57**, 1544 (1998).
- [10] F. Nori and J. P. Rodriguez, Phys. Rev. B **34**, 2207 (1986).
- [11] T. Fujiwara, M. Kohmoto, and T. Tokihiro, Phys. Rev. B 40, 7413 (1989).
- [12] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
- [13] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature (London) **390**, 671 (1997).
- [14] M. Storzer, P. Gross, C. M. Aegerter, and G. Maret, Phys. Rev. Lett. 96, 063904 (2006).
- [15] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature (London) 446, 52 (2007).
- [16] J. B. Pendry, Adv. Phys. 43, 461 (1994).
- [17] J. Bertolotti, S. Gottardo, D. S. Wierma, M. Ghulinyan, and L. Pavesi, Phys. Rev. Lett. **94**, 113903 (2005).
- [18] J. Bertolotti, M. Galli, R. Sapienza, M. Ghulinyan, S. Gottardo, L. C. Andreani, L. Pavesi, and D. S. Wiersma, Phys. Rev. E 74, 035602 (R) (2006).
- [19] H. Q. Li, H. Chan, and X. J. Qiu, Physica B **279**, 164 (2000).
- [20] V. A. Tolmachev, T. S. Perova, J. A. Pilyugina, and R. A. Moore, Opt, Commun. **259**, 104 (2006).

96

- [21] P. W. Anderson, Phys. Rev, **109**, 1492 (1958).
- [22] D. J. Thouless, Physics Reports 13, 93 (1974).
- [23] B. Kramer e A. MacKinnon, *Rep. Prog. Phys.* 56, 1469 (1993).
- [24] K. Slevin e T. Ohtsuki, Phys. Rev. Lett. 82, 382 (2001).
- [25] K. Slevin, P. Marko e, T. Ohtsuki, Phys. Rev. Lett. 86, 3594 (2001).
- [26] S. L. A. de Queiroz, Phys. Rev. B 63, 214202 (2001).
- [27] K. Slevin, T. Ohtsuki e, T. Kawarabayashi, Phys. Rev. Lett. 84, 3915 (2000).
- [28] H. Aoki e T. Ando, Solid State Commun 18, 1981 (1079).
- [29] S. Etamad, R. Thompson e M. J. Andrejco, Phys. Rev. Lett 57, 575 (1986).
- [30] E. Akkermans e R. Maynard, J. Physique Lett. 46 L1045 (1985).
- [31] p. E. Lindelof, J. Nørregaard e J. Hanberg, *Phys. Scr.* **T14**, 17 (1986).
- [32] ver, por exemplo, Scalora M, Bloemer M J, Pethel A. S., Dowling J. P. and Bowden C. M., J. Appl. Phys. 83 (1998) 2846.
- [33] Li H., Chen. H, Qiu X, Physica B **279** 164 (2000)
- [34] Xu J., Fang H., Lin Z., Journal of Physics D 34 445 (2001)
- [35] M. Born e E. Wolf. Principles of Optics, 5 ed., Pergamon Press (1975).
- [36] M. Ya. Azbel, Physical Review Letters 43, 1954 (1979).
- [37] S. Aubry, in *Proc. Colloquium on Group Theoretical Methods in Physics*, March, 1979, Lectures in Physics (Springer, Berlin, in Press).

Instituto de Física - UFAL

- [38] J. B. Solokoff, Physical Review B **22** 5823 (1980).
- [39] C. M. Souloulis e E. N. Economou, Physical Review Letters 48, 1043 (1981).
- [40] D. J. Thouless, Physical Review Letters **61**, 2141 (1988).
- [41] S. Das Sarmas, S. He, and X. C. Xie, Phys. Rev. Lett. 61, 2144 (1988); Phys.
 Rev. B 41, 5544 (1990).
- [42] V. G. Veselago, Sov. Phys. Usp. **10**, 509-514 (1968).
- [43] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
- [44] K. Guven, M. D. Caliskan, E. Ozbay, Optics Express 14, 8685 (2006).
- [45] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
- [46] J. A. Kong, B. -I, Wu, Y. Zhang, Microwave Opt. Technol. Lett. 33, 136-139 (2002).
- [47] L. Wu, S. He, L. Shen, Phys. Rev. B 67, 235103 (2003).
- [48] J. Li, Lei Zhou, C. T. Chan, P. Sheng, Phys. Rev. Lett. **90**, 083901 (2003).
- [49] J. A. Monsoriu, R. A. Despine, M. L. Martínez-Ricci, E. Silvestre, Opt. Express 14, 12958 (2006).
- [50] Y. Yuan, L. Ran, J. Huangfu, H. Chan, L. Shen, J. Au Kong, Opt. Express 14, 2220 (2006).
- [51] A. A. Asatryan, et. al. Phys. Rev. Lett. **99**, 193902 (2007).

- [52] D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65, 88 (1990).
- [53] P. W. Phillips and H.-L Wu, Science **252**, 1805 (1991).
- [54] G. Theodorou e M. Cohen, Phys. Rev. B 13, 4597 (1976).
- [55] L. Fleishman e D. C. Licciardello, J. Phys. C 10, L125 (1977).
- [56] R. Ozaki, Y. Matsuhisa, H. Yoshida, K. Yoshino, and M. Ozaki, J. Appl. Phys. 100, 023102 (2006).
- [57] N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, Opt. Express 15, 1024 (2007).
- [58] N. Y. Ha, Y. Ohtsuka, S. M. Jeonh, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, e H. Takezoe, Nature Mater. 7 43 (2008).
- [59] P. G. De Gennes and J. Prost, The Physics os Liquid Crystals (Clarendon, Oxford, 1993).
- [60] ,D. Subacius, P. J. Bos, and O. D. Lavrentovich, Appl. Phys. Lett. 71, 1350 (1997).
- [61] S. W. Kang, S. Sprunt, L. C. Chien, Appl. Phys. Lett. 76, 3516 (2000).
- [62] S. Stallinga, J. Appl. Phys. 85, 3023 (1999).
- [63] D. W. Berreman, J. Opt. Soc. Am. **62**, 502 (1972).
- [64] F. Reintzer, Beiträge zur Kenntnis des Cholesterins. Monatsh. Chem. 9, 421 (1888).
- [65] F. Reintzer, Contributions to the knowledge of cholesterol. Liq. Cryst. 5, 7, (1989). Tradução para o inglês da referência [64].

Instituto de Física - UFAL
- [66] D. Vorländer, Eingluβ der molekularen Gestalt den krystallinisch-flüssigen Zustand. Ber Deutsch. Chem. Ges. 40, 1970 (1907).
- [67] CIE (1931). Commission internationale de l'Eclairage proceedings, 1931. Cambridge University Press, Cambridge.
- [68] T. Smith, J. Guild, "The C.I.E. colorimetric standards and their use". Transactions of the Optical Society 33 (3): 73-134. doi:10.1088/1475-4878/33/3/301.

Capítulo 7

Anexo

7.1 "Scaling laws for the transmission of random binary dielectric multilayered structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Physical Review B 76, 115120 (2007) 102
7.1 "Scaling laws for the transmission of ran-dom binary dielectric multilayered structured structure res", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Physical Review B 76, 115120 (2007) (2007)

pagina 1

7.1 "Scaling laws for the transmission of random binary dielectric multilayered structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Physical Review B 76, 115120 (2007) 103 pagma 2

7.1 "Scaling laws for the transmission of random binary dielectric multilayered structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Physical Review B 76, 115120 (2007) 104 pagma 3

7.1 "Scaling laws for the transmission of random binary dielectric multilayered structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Physical Review B 76, 115120 (2007) 105 pagma 4

7.1 "Scaling laws for the transmission of random binary dielectric multilayered structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Physical Review B 76, 115120 (2007) 106 pagma 5

7.1 "Scaling laws for the transmission of random binary dielectric multilayered structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Physical Review B 76, 115120 (2007) 107 pagma 6 7.2 "Suppressed transmission in aperiodically modulated multilayered dielectric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Photonics and Nanostructures - Fundamentals and Applications DOI: 10.2016/j.photpp:2055.edu/transmission in aperiodically mo-

dulated multilayered dielectric structures", E.

M. Nascimento, F. A. B. F. de Moura, M. L.

Lyra. Photonics and Nanostructures - Funda-

mentals and Applications DOI: 10.1016/j.photonics.2

pagina1

7.2 "Suppressed transmission in aperiodically modulated multilayered dielectric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Photonics and Nanostructures - Fundamentals and Applications DOI: 10.1016/94jihet2nics.2008.12.004

7.2 "Suppressed transmission in aperiodically modulated multilayered dielectric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Photonics and Nanostructures - Fundamentals and Applications DOI: 10.1016/94jihet&nics.2008.12.004
110

7.2 "Suppressed transmission in aperiodically modulated multilayered dielectric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Photonics and Nanostructures - Fundamentals and Applications DOI: 10.1016/94jihetAnics.2008.12.004
111

7.2 "Suppressed transmission in aperiodically modulated multilayered dielectric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Photonics and Nanostructures - Fundamentals and Applications DOI: 10.1016/94jih@t5nics.2008.12.004
112

7.2 "Suppressed transmission in aperiodically modulated multilayered dielectric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Photonics and Nanostructures - Fundamentals and Applications DOI: 10.1016/94jihet&nics.2008.12.004
113

7.2 "Suppressed transmission in aperiodically modulated multilayered dielectric structures", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Photonics and Nanostructures - Fundamentals and Applications DOI: 10.1016/94jihet5nics.2008.12.004
114

7.3 "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Optics Express 16, 6860 (2008).
7.3 "Funite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Optics Express 16, 6860 (2008).
A. B. F. de Moura, M. L. Lyra. Optics Express 16, 6860 (2008).

pagina 1

7.3 "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. A. B. F. de Moura, M. L. $\frac{\text{Lyra. Optics Express 16, 6860 (2008)}}{\text{página 2}}$ 116

Instituto de Física - UFAL

7.3 "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. A. B. F. de Moura, M. L. $\frac{\text{Lyra. Optics Express 16, 6860 (2008)}}{\text{pagma 3}}$ 117

7.3 "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. A. B. F. de Moura, M. L. $\frac{\text{Lyra. Optics Express 16, 6860 (2008)}}{\text{pagma 4}}$ 118

7.3 "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. A. B. F. de Moura, M. L. $\frac{\text{Lyra. Optics Express 16, 6860 (2008)}}{\text{pagma 5}}$ 119

7.3 "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. A. B. F. de Moura, M. L. Lyra. Optics Express 16, 6860 (2008) 120
 120

Instituto de Física - UFAL

7.3 "Finite-size scaling and disorder effect on the transmissivity of multilayered structures with metamaterials", E. M. Nascimento, F. A. B. F. de Moura, M. L. $\frac{\text{Lyra. Optics Express 16, 6860 (2008)}}{\text{página 7}}$ 121

Instituto de Física - UFAL

7.4 "Reflection chromaticity of multilayered structures incorporating cholesteric liquid crystals", E. M. Nascimento, I. N. de Oliveira, M. L. Lyra. Joural of Applied Physics 104, 103511 (2008)
7.4 "Reflection chromaticity of multilayered structures incorporating cholesteric liquid crystals", E. M. Nascimento, I. N. de Oliveira, M. L. Lyra. Joural of Applied Physics 104, 103511 (2008)